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Fourier Series. Fourier Transform

Fourier Series.

Recall that a function differentiable any number of times at x = a can be represented as a power

series
S (a)

n!

Z an(x —a)® where the coefficients are given by a, =

Thus, the function can be approximated by a polynomial. Since this formula involves the n-th deriva-
tive, the function f should be differentiable n-times at a. So, just functions that are differentiable
any number of times have representation as a power series. This condition is pretty restrictive be-
cause any discontinuous function is not differentiable. The functions frequently considered in signal
processing, electrical circuits and other applications are discontinuous. Thus, there is a need for a
different kind of series approximation of a given function.

The type of series that can represent a a much
larger class of functions is called Fourier Series.
These series have the form

- 2
:50 Zancos —i—bnsin 7;7}1:)

The coefficients a,, and b,, are called Fourier co-
efficients.

Note that this series represents a periodic function with period T

To represent function f(z) in this way, the function has to be (1) periodic with just a finite
number of maxima and minima within one period and just a finite number of discontinuities, (2) the
integral over one period of |f(z)| must converge. If these conditions are satisfied and one period of
f(z) is given on an interval (xg,zo + T'), the Fourier coefficients a,, and b, can be computed using
the formulas

2 [rotT 2nmw 2 [rotT . 2nmx
an—f/ f(z) cos T dx bn—f/ f(z)sin T dx

o

When studying phenomena that are periodic in time, the term QT” in the above formula is usually

replaced by w and t is used to denote the independent variable. Thus,

f(t) = % + Z(an cos nwt + by, sin nwt)
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If the interval (xg, 2o + T) is of the form (=L, L) (thus T' = 2L), then the coefficients a,, and b,
can be computed as follows.

/ f(z cos@dx / f(z sin@dm

:50 z:: ancos——l—b sm?)

As a special case, if a function is periodic on [—m, 7], these formulas become:
1/Wﬂ) de b 1/Wf()' de f(x) “°+§Ooj< + by sin nz)
= — x)cosnz dx n = — x)sinnx dx xr)=— a, cos nx + b, sin nx
T J)_r T 2 ot

Obtaining the formulas for coefficients. If f(x) has a Fourier series expansion

C 2 2
f(x) = % + ;(an cos Ziw + b, sin 7;7}96)

one can prove the formulas for Fourier series coefficients a,, by multiplying this formula by cos <2~ 27”“‘

and integrating over one period (say that it is (—T, %))
T/2 9 T/2 2
f(x) cos T e = / 20 cos T g 1
—1/2 —r/2 2
> T/2 2mme 2mnx /2 . 2mmx 2mnx
Z Ay, COS cos dxr + b, sin Cos dx
—\Jo1p2 T T 12 T T

All the integrals with m # n are zero and the integrals with both sin and cosine functions are
zero as well. Thus,

f(x) cos a, COos Ccos dr = a, T = a, = = f(x) cos dx

T/2 2mnx J / T/2 2mn 2mna 1 [T/? 2mnx
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it n > 0. If n = 0, we have that TaoszéZf( )dx and so ag = TfT/2

T/2
2mnx 27rn3:
The formula for b, is proved similarly, multiplying by sin =%* instead of cos =5+

Symmetry considerations. Note that if f(x) is even (that is f(=z) = f(x)), then b, = 0. Since

b, = %fL f(z)sin 222 dx = 1 f f(z)sin 222 dx + fo ) sin 222 dm Using the substitution
u = —x for the first integral we obtaln that it is equal to — f I ) sin =5 du Using that
f(—z) = f( ), that sin =™ = —sin " and that — fL = fo , we obtam —fo —sin ) du =
=1 fo )sin “7* du. Note that this is exactly the negative of the second 1ntegral Thus, the first

and the second 1ntegral cancel and we obtaln that b, = 0.
Similarly, a, = %fL f(z)cos 2 dx = + f f(x) cos = dx + }JfOL )Cosm dx. Using the

substitution u = —x for the ﬁrst integral we obtain that it is equal to — f I ) cos =7 du. Using
that f(—z) = f(x), that cos =% = cos 27 and that — fL = fo , we obtaln 1 fo cosw Note
that this is equal to the second integral. Thus, the two integrals can be comblned and SO

/ f(x cosde and f(x +Zancos—

If f(z) is odd, using analogous arguments, we obtain that a,, = 0 and

/ f(x smT dr  and f(x Zb sin — nre

These last two power series are called Fourier cosine expansion and Fourier sine expansion
respectively.

Example 1. The input to an electrical circuit that switches between a high and a low state with
time period 27 can be represented by the boxcar function.

1 0<zxr<m
f(m)_{—l —rm<z<0

The periodic expansion of this function is called the square wave function.
More generally, the input to an electrical circuit that switches from a high to a low state with
time period T can be represented by the general square wave function with the following formula

1 0<z<Z
on the basic period. f(z) = { 7 2
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Find the Fourier series of the square wave and the general square wave.

Solutions. Graph the square wave function and note it is odd. Thus, the coefficients of the
cosine terms will be zero. Since L = 7 (T' = 27), the coefficients of the sine terms can be computed
as b, = £ [T f(z)sinnads = 2 [ sinnade = =2 cosnz|j = =2((—1)" — 1). Note that (—1)" —1 =
1—1=0ifniseven (say n =2k) and (—1)"—1=—-1—1= —2if nis odd (say n = 2k +1). Thus,
bor = 0 and bop 1 = ;wf(—Z) = (%il) Hence,

%S . sin(2k T sin 3z sin 5z
fl@) =432 g isinng = 43750 DT 4 (g g sinde gosinde )
For the general square wave, analogously to this previous con81deration you obtain that a,, = 0,

o o 4 . 2(2k+1)mx 4 0 1 . 2(2k+1)mx
b = 0 and bopy1 = Griqy; sin =7 Thus, f(x) =20 0 s sin ==

Even and odd extensions. If an arbitrary function f(x), not necessarily even or odd, is defined
on the interval (0, L), we can extend it to an even function

| fz) O<z<L
g(q;)_{ f(—x) —L<z<0

and consider its Fourier cosine expansion:

/f cosde and f(x —i—Zancos@

Similarly, we can extend f(z) to an odd function

 flx) O<z<L
W) _{ —f(—x) —L<z<0

and consider its Fourier sine expansion:

/f Slanl' and f(x Zb sin 1L

Useful formulas. To simplify the answers, sometimes the following identities may be useful

sinnm =0 | cosnm = (—1)" In particular, cos2nm = 1 and cos(2n + 1)m = —1.
If n =2k + 1 is an odd number, sin 2 = sin W = (—1)k cos & = cos (2’“;1)” -0
Example 2

Find the Fourier cosine expansion of

2—x l<x<?2

f(x):{x 0<ax <1 ~



Solutions. First extend the function symmetrically with respect to y-axis so that it is defined on
basic period [-2,2] and that it is even. Thus T' = 4 and L = 2. T he coefficients b are zero in this case

. 2
and the coefficients a,, can be computed as follows. a ) cos ZEdx = ' 2 cos x —
d th fficients a,, b ted as foll n 0 “5Ed 0 “Edr+ [ ( 2
) cos "7 dx. Using integration by parts with u = z, v = i sin ”72”” for the first and u = 2 x and same

. mrm nwx 2(2—x) nrz nrx \ |12 __

v for the second, you obtain a, = (2 sin 2% 4 —L; cos —) b+ (— sin "2% — 1 cos —) 1 =
2 nm 2 nmw

: 4 nm 4 4 : 4 nr _ _8 nt__ 4 4 _

- sin 5 +n27r2 COS 5 — 53— ;3.3 COS mr—mr sin — 5 +n27r2 COS 5 = 55 COS 5 — 55— 33 COSNT =

—>(2cos 5 — 1 — cosnm).
If n=2k+1isodd, a, = W(O— 1+1) =0.1f n = 2k is even, a, = 7= (2(-1)" =1 -1).
Because of the part with (—1)*, we can distinguish two more cases depending on whether k is

even or odd. Thus, if & = 2[ is even, a, = (46;%2(2 —1-1)=0.If k =2l+1is odd, a, =

4 . —16 —4
(2(20+1))2m (2(_1) —1- 1) - (4l+2) - (2z+1)2 2
Ifn=0,a = fo dx—foxdx+f1 das:l~|—%:1

2
414+-2)7x o9
So, f(x) =3 — = 25 (2l-11-1)2 cos T = % — 25 Yo oz 0820 + 1)ma

Example 3. Consider the function f(x) =22 for 0 <z < 2.

(a) Sketch the graphs of the following (1) the periodic extension of f(z), (2) the even periodic
extension of f(x), (3) the odd periodic extension of f(z) and write the integrals computing the
coefficients of the corresponding Fourier series in all three cases.

(b) Find the Fourier cosine expansion for f(z).

Solutions. (a) The periodic extension of f(x) is neither even nor odd. You can obtain the graph
of it by replicating f(x) on intervals ...[—4,—2],[—2,0], [0, 2], [2,4], [4,6] ... of length T" = 2. The

coefficients of the corresponding Fourier series can T
be calculated by

43

2
ap = / x? cosnrx dr
0
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2
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b, = / 2?2 sinnrx dr.
0

L

The even extension of f(z) is obtained by extending f(z) from [0, 2] to [—2,2] by defining
f(x) = (—z)* = 2% on [—2,0]. Thus, the result is the function x? defined on interval [—2,2].

Then, replicate this function on intervals

. [-6,-2],[-2,2],[2,6],[6,10],... of length T" =
4. Thus, T = 4 and L = 2. The coefficients of the T
corresponding cosine Fourier series can be calcu- L
lated by l
2
anz/ Peos o de b, =0, Sy >
0 2




The odd extension of f(z) is obtained by extending f(z) from [0, 2] to [—2, 2] by defining f(z) =

—(z)* = —z? on [—2,0]. Thus, the result is the function
x? 0<zx<2
—x? —2<x<0 T

defined on interval [—2, 2]. Replicate this function
on intervals ...[—6,—2],[—2,2],[2,6],[6,10],...
of length T'= 4. Thus, T'= 4 and L = 2. The co-

efficients of the corresponding since Fourier series
can be calculated by

2
bn:/xzsm?dx a, = 0.
0

(b) By part (a), the coefficients a,, can be calculated by a,, = f02 x? cos "ZEdz. Using integration

by parts with u = 22 and v = fcos “rdr = —smm, we obtain that a, = —a: smm\O

2
ﬁ fo xsin *5*dz. The first term is zero and the second term requires another integration by parts,

this time Wlth u =z and v = [sin"22dr = n—i cos *5*. Thus a, = 28 ——x cos “ZE|8 — n1i3 sin 2223

The first term is zero in the lower bound and the second term is zero at both bounds. Thus

Gy = n%?ﬂ cosnNmT = 16(—1 Note that this formula works just for n > 0 so a¢ has to be computed
separately by ag = fo = ?]0 =£
Thus, the Fourier series is 2% = § + 1 5> | ( nl) cos "3°.

Complex Fourier Series. The complex form of Fourier series is the following;:

[e o]

> nmwic 2 2 1 Z‘()-‘rT —2nmix
= Z cne2T = Z Cn (oos r;rx + ¢ sin njzm‘) where ¢,, = T/xo f(x)e .,

n=—oo n=—oo

If f(x) is a real function, the coefficients ¢, satisfy the relations ¢, = %(an —ib,) and c_, =
%(an +ib,) for n > 0. Thus, c_, = ¢, for all n > 0. In addition,

an = ¢+ c_p, and b, =i(c, — c_,) for n > 0 and ay = 2c.

These coefficients ¢, are further associated to f(z) by Parseval’s Theorem. This theorem is
related to conservation law and states that

o0 o0

1 [rott al 1
RO SN 3 D6+ )

Zo n=—oo n=1

Note that the integral on the left side computes the average value of the moduli squared of f(x)
over one period and the right side is the sum of the moduli squared of the complex coefficients. The
proof of this theorem can be your project topic.

Symmetry Considerations. If f(x) is either even or odd function defined on interval (—L, L),
the value of |f(x)[* on (—L,0) is the same as the value of | f(z)|? on (0, L). Thus,



== f z)[*de = ¢ fo | f(2)|?dz. In this case, Parseval’s Theorem has the following form.

/ ]das—Z]cn|2 42 Z 2.

n=—oo

Example 4. Using the Fourier series for f(z) = 22 for 0 < x < 2 from Example 3 and Parseval’s
Theorem, find the sum of the series > > | .

Solutions. Recall that T' = 4 L = 2 and that the function is even. In Example 3 we have find

that a, = 16( forn >0, ag = <. Thus, Parseval’s Theorem applied to this function results in the

following ,
1 A @2 I, 5, o 16 162 (1
- dr = -2+ = V)= —+— —+0].
2/0 zidr = - +2;(an+ -) o T3 2 i

Note that integral on the left side is % f ddr = 16 . Dividing the equation above by 16 produces

[e.9] o0

n 1 1 s
5 9 wtéad —nt 90

Practice Problems.

1. Use the Fourier series you obtain in Example 1 to find the sum of series

et

2n+1

n=0

2. Note that the boxcar function from Example 1 represents the odd extension of the function
f(z) =1for 0 <z < w. Consider the even extension of this function and find its Fourier cosine
expansion.

T 0<z<l1

Use it to find the sum of
2—x l<ax<?2

3. Find the Fourier sine expansion of f(z) = {

series
[e.9]
n:O 2n +1)2
4. The voltage in an electronic oscillator is represented as a sawtooth function f(t) = t for

0 <t <1 that keeps repeating with the period of 1. Sketch this function and represent it using
a complex Fourier series. Then use this Fourier series and Parseval’s Theorem to find the sum

of the series
o

1
n?’
n=1

11—z 0<z<l

5. Find the Fourier series of f(z) = { L lez<0

Solutions.



. In Example 1, we obtain that f(z) =23 sn@nil)e where f ( ) is the square wave function.

T on+1
. o 4 sin(2n+1) % _ 4 (-1
Choosing x = 7, we have that 1 = Zn 0T L = Zn 0 2n+1 | Zn 0 it = .
. The even extension of f(z) is f(x) = 1 for —7 < x < 7. The periodic extension of this

function is constant function equal to 1 for every x value. Note that this is already in the
form of a Fourier series with b, = 0 for every n, a, = 0 for n > 1 and ay = 2. Computing the
Fourier coefficients would give you the same answer: a, = % foﬂ cosnr der = 0if n > 1 and
ap = 2 [dx = 2. Thus, f(z) = 3+ > 2,0 = 1. This answer should not be surprising since
this function is already in the form of a Fourier series 1 = 14 > (0 cosnz + 0sinnz).

. Extend the function symmetrically about the origin so that it is odd. Thus T'=4 and L = 2.
Since this extension is odd, a,, = 0. Compute b, as b, = f02 f(x)sin 22Edx = fo sin "ZEdx +

J7(2 =) sin "5t de = (2 cos "5 + o sin 15%) [§ + (M—— %sm””)\%:
8

7;—icos”—”—l— 428in%+—0087+msm7: ——5sin 5. Thisis 0if n is even. If n = 2k +1,

. -k . (2k+D)7
this is W SO f( ) = % ZZO:O §k+)1)2 Sin ( 2) I.
To find the sum of series y_ 2n+1La

(=™ . Cnt+l)m _ n _
and its Fourier sine expansmn is equal to — DI (2n Tz ST = LD D on +1)2( )" =
2

_ _m
F ano (2n+1)2 S0 F Zn:O (2n+1)2 =1= Zn:[} (2n+1)2 - 8"

T =1, f(t) = 300 cpe®™™ and ¢,

n=—oo

n2n?

note that when x = 1 the function f@ ) is equal to 1

T, —2nmit _ _ t _—2nmit|l 1 —2nmit|]l _
f te = onmi€ |0 n2n2 € |0 -
1 —2nmi 1 —2nmwi __ 1
“onmi© + m2az € 4n2m2”

-2 -1 1 2z 2

Note that e "™ = cos(—2nm) 4 isin(—2n7) = 1. Thus ¢, = —— + 0 = 5. Note that
n = s =0Cp. = fol t dt = ;. This gives us f(t) = 54+ 20t oot #627”“ Note also that

onm

ag = 2¢co = 1, an—Oforn>0andb

o

Parseval’s Theorem gives us that [)a2de = 1+ 150 L = 1 = 1 L 5w 1
00 2

anl # = 6

. Graph the function and note it is even. Thus, b, = 0. Since T'=2 and L =1 a,, = 2f01(1 —

x) cos(nmx) dx. Using the integration by parts With u=1-—x and v fcos nrx)dr =

- sin(nmx), obtain that a, = 2 (1 —z)sin(nrz)§ + = fo sin(nra) de = 0— 25 cos(nmx)|§ =
——25((—1)"—1). This last expression is 0 if n is even "and equal to —25 = (21<;+21 oz ifn = 2k+1

is odd. Note that the formula ——5((—1)" — 1) does not compute ag because of the n in the

denominator so calculate ag from the formula ag = 2 fol(l —xz)dr =x — %th) = . This gives
you the Fourier series expansion f(z) =1+ > o, m cos(2k + 1)mx.



Fourier Transformation

The Fourier transform is an integral operator meaning that it is defined via an integral and that
it maps one function to the other. If you took a differential equations course, you may recall that
the Laplace transform is another integral operator you may have encountered.

The Fourier transform represents a generalization of the Fourier series. Recall that the Fourier
. . 2nmit . .
series is f(t) = >.°° __¢,e” 7 . The sequence ¢, can be regarded as a function of n and is called

Fourier spectrum of f(¢). We can think of ¢(n) being another representation of f(t), meaning
that f(t) and c¢(n) are different representations of the same object. Indeed: given f(¢) the coefficients
c(n) can be computed and, conversely, given ¢(n), the Fourier series with coefficients ¢(n) defines a
function f(t). We can plot ¢(n) as a function of n (and get a set of infinitely many equally spaced

points). In this case we think of ¢ as a function of n, the wave number.

We can also think of ¢ as a function of w = 2”7”, the frequency. If T is large, then w is small,

so for large T, we can think of ¢(w) being a continuous function. Also, two consecutive n values are
length 1 apart so dn = 1. Thus, dw = 2%dn = dw = 2?” and TQ—‘i‘" = 1. Thus we have

]. T/2 —2nmit T/2 .
Cn = 75 flemm dt = Tclw)= f(t)e ™dt and so
T -T/2 —-T/2
d nmi > Td . 1 > .
f(t) = Z o T = Z QWwC(w)e“”t =5 Z Te(w)e dw.
n=-—oo Tw/(2m)=—00 Tw/(27)=—00

When we let T" — oo, the above expression become

0= (o a) o= [ (G [ o)

We denote the expression in parenthesis by F'(w) and so get the final formulas:

F(w) = \/%7 7 f(t)etdt F(w) is the Fourier transform of f(t).
f(t) = \/LQTr [ F(w)e™dw f(t) is the inverse Fourier transform of F(w).

We can still think of f(¢) and F(w) being the same representations of the same object: the first
formula above computes F'(w) for given f(¢) and the second one computes f(t¢) for given F(w). To
understand the significance of this, it is helpful to think of f(¢) as of a signal which can be measured
in time (so f(¢) can be obtained) but that needs to be represented as a function of frequency, not
time. In this case, Fourier transform produces representation of f(¢) as a function F'(w) of frequency
w.

The Fourier transform is not limited to functions of time and temporal frequencies. It can be
used to analyze spatial frequencies. If the independent variable in f(¢) stands for space instead of
time, x is usually used instead of ¢. In this case, the independent variable of the inverse transform is

denoted by k.
t<+—=x and w+— k

Mathematically, the importance of the Fourier transform lies in the following:

9



1. If the initial function f(¢) has the properties that are not desirable in a particular application
(e.g. discontinuous, non smooth), we can consider the function F'(w) instead which is possible
better behaved.

2. Fourier transform represents a function that is not necessarily periodic and that is defined on
infinite interval. The only requirement for the Fourier transform to exist is that the integral
S5 1f()]dt is convergent.

3. Fourier transformation is a generalization of Fourier series.

In physics, on the other hand, Fourier transform is used in many sub-disciplines. One of the most
important applications of Fourier transform is in signal processing. We have pointed out that the
Fourier transform presents the signal f(t), measured and expressed as functions of time, as a function
F(w) of frequency. The transform F(w) is also known as the frequency spectrum of the signal.

Moreover, Fourier transform provides information on the amplitude and phase of a source signal
at various frequencies. The transform F'(w) of a signal f(t) can be written in polar coordinates as

F = |F|e”

The modulus |F| represents the amplitude of the signal at respective frequency w, while 6 (given by
arctan( Im F'/ Re F') computes the phase shift at frequency w. This gives rise to various applications
cryptography, acoustics, optics and other areas.

In addition, Fourier transform can be used similarly to Laplace transform: in converts a differential
equation into an ordinary (algebraic) equation that is easier to solve. After solving it, the solution
of the original differential equation can be obtained by using the inverse Fourier transform.

Example 1. Find the Fourier transform F}(w) of the boxcar function.

ff(t):{(l) —1l<t<1

otherwise

Express your answer as real function.

Generalize your calculations to find the A
Fourier transform F“(w) for the general boxcar
function.
A —a<t<a
Al —
Ja(t) = { 0 otherwise
-a a

The boxcar function is said to be normalized if A = ﬁ so that the total area under the function

is 1. We shall denote the normalized boxcar function that is non-zero on interval [—a, a] by f,.

10



Sometimes the values of fa at x a and
—a are defined to be ;-. For example, if

=, the following graph represents fa.

IL‘—
a

Consider how changes in value of a impact the
shape and values of F,(w).

Solution. F(w) = \/% [ f(t)e~tdt. Since

f(t) =0fort < —1and ¢t > 1, and f(t) =1 for
—1 <t <1, we have that

05—

r i
00 [——0

F(w) = \/%f LAt = ==L = =L-(e7™ — ™). Use the Euler’s formula to obtain
F(w) = —5==(cos(—w) + isin(—w) — cosw —isinw) . Using that cos(—w) = cosw since cosine is
even and sm( w) = — sinw since sine is odd function, the cosine terms cancel and we obtain that

F(w) = \/2;7:@ (—2isinw) = \/%m sinw.

Similarly, if a boxcar function of height A is nonzero on interval [—

A _ 1 a —iwt _ _A —taw __ plaw) __
Flw) = 2= [7, Ae™dt = (e elw) =
Function #2Z is known as sinc function.

sinx

sinc(x)

X

Sometimes the normalized sinc function
SBTL js used. Note that lim, ,osinc(x) = 1 and
lim, o, sinc(z) = 0.

L sinc(0.1x)
_— \\\\\

— ™~ /T

—iaw

2A etw—_e — 2A
2mw 21 V2mw

sinc(0.5x)

al, the Fourier transform is

sin aw.

sinc (x)

sinc (x)

/ \A sinc(2x)

sinc(10x)

Using the sinc notation, we can represent

the Fourier transform of the boxcar function f2(¢) as the sinc function F:A(w) =

\2/“ﬁs1nc(aw)

11




If the box function is normalized, A = o= so F,(w) = \/%sinc(aw). Since sinc(0)=1, the peak of
this function has value \/%

Let us compare the graphs of f, and F, for several different values of a. You can notice that
larger values of a correspond to f, having smaller hight and being more spread out. In this case, F,
has a narrow, sharp peak at w = 0 and converges to 0 faster. If a is small, f, has large height and
very narrow base. In this case, F;, has very spread out peak around w = 0 and the convergence to 0

is much slower.

In the limiting cases a — 0 represents a con-
stant function and a — oo represents the Dirac
delta function §(¢). This function, known also
as the impulse function is used to represent
phenomena of an impulsive nature. For exam-
ple, voltages that act over a very short period of
time. It is defined by

o(t) = lim f,(t).
a—0
Since the area under f,(t) is 1, the area under 6(t) is 1 as well. Thus, 0(¢) is characterized by the
following properties:

(1) 4(t) = 0 for all values of ¢ # 0 (2) [T o(t)dt = 1.

—00

Since no ordinary function satisfies both of these properties, d is not a function in the usual sense of
the word. It is an example of a generalized function or a distribution. Alternate definition of Dirac
delta function can be found on wikipedia.

We have seen that F, for a small a is very spread out and almost completely flat. So, in the
limiting case when a = 0, it becomes a constant. Thus, the Fourier transform of 6(¢) can be obtained
as limit of F,(w) when a — 0. We have seen that this is a constant function passing \/% Thus,

5
3

the Fourier transform of the delta function 6(¢) is the constant function F'(w)

Conversely, when a — oo f, — \/%7 The Fourier transform of that is limit of F, for a — oo.
We have seen that this limit function is zero at all nonzero values of w. So, we can relate this limit
to d(w). Requiring the area under F, to be 1 can explain why normalized sinc function is usually
considered instead of regular sinc.

Example 2. Find the inverse Fourier transforms of boxcar and Dirac delta functions.

Solutions. The inverse transform of the general boxcar function can be computed by

f(lf) — \/%7 ffa Aetdw = \/éim‘t (eiat _ e—iat)

To express this answer as a real function, use the Fuler’s formula and symmetries of sine and
cosine functions similarly as in Example 1 to obtain the following.
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f(t) = \/it (cos at + isinat — cos(—at) — isin(—at)) = Ft (cosat + isinat — cosat + isinat) =
W - (2isinat) = Wt sinat = 3‘2% sinagt _ Zed dnoi ?;‘ésmc(at) Thus, the inverse transform of the

boxcar function is the sinc function. This also illustrates that

the Fourier transform of the sinc function is the boxcar function.

Taking the limit when @ — 0 in the normalized case, we obtain that the inverse Fourier of the
delta function is the limit of rsmc(at) when a — 0 which is the constant function f Thus,

the Fourier transform of the constant function f(t) = \/LQ? is the delta function 6 (w).

Example 3. Consider the Gaussian probability function (a.k.a. the "bell curve”)
f(t) = New®

where N and a are constants. N determines the height of the peak and a determines how fast it
decreases after reaching the peak. The Fourier transform of f(t) can be found to be

N
F(w) — EB_W2/4Q'

This is another Gaussian probability function. Examine how changes in a impact the graph of the
transform.

Solutions. If a is small, f is flattened. In this case the presence of a in the denominator of the
exponent of F'(w) will cause the F' to be sharply peaked and the presence of a in the denominator of
\/%, will cause F' to have high peak value.

If a is large, f is sharply peaked and F' is flattened and with small peak value.

All the previous examples are related to Heisenberg uncertainty principle and have applications
in quantum mechanics. The following table summarize our current conclusions.

Function in time domain | Fourier Transform in frequency domain
boxcar function sinc function
sinc function boxcar function
delta function constant function
constant function delta function
Gaussian function Gaussian function

13



Symmetry considerations.

The table on the right displays the formulas

of Fourier and inverse Fourier transform for even f(t) even | F(w) = \/E fooo f(t)coswt dt
and odd functions. 2 ! oo
Fourier sine and cosine functions. Sup- F(w) even | f(t) = \/;fo F(w) coswt dw

pose that f(t) is defined just for ¢ > 0. We can
extend f(t) so that it is even. Then we get the F(t) odd | Flw)= \/Efooo F(t) sinwt dt

formula for F'(w) by using the formulas for even S oo '
function above. F'(w) is then called Fourier co- F(w) odd | f(t) = \/; Jo F(w)sinwt dw
sine transformation.

Similarly, if we extend f(t) so that it is odd, we get the formula for F(w) same as for an odd
function above. F'(w) is then called Fourier sine transformation.

Relation of Fourier transform and Fourier Series.

We illustrate this relation in the following example. Consider the Fourier series of a boxcar
function f,(t). Let s, denote the Fourier coeflicient in the complex Fourier series. The value of a
determines sampling period 7" and spacing wy in frequency-domain.

2m and 2nm N
wn = — na w = —m— W = nwyp.
0= T 0
In the following figures !, we consider the boxcar function with a = % (so T =1 and wy = 2m).

The first graph on each figure displays the Fourier transform, sinc function, in the frequency-domain.
The highlighted frequency on the first graph determines the value of n. The second graph displays
the harmonic function corresponding to n-th term of the Fourier series of the function f(¢) in the
time-domain. The third graph is the sum of the first n terms of the Fourier series of f(t).

Note that as n — oo the sum of Fourier series terms converge to the boxcar function.

Amplitudes of Amplitudes of
Fourier components: ° Fourier components:
o !
S}I . S}1 .
5 & e w e 1 s @
@ [N
2 2 2 2
15 15 1.5 15
flt)a 1 fith 1
05 0.5 a5 0.5
0 ¢} 0 Q
—1.5 -1 05 05 1 15 2 -2 -1 0 1 2 -2 1 1 2 -2 -1 0 1 2
f i f i
Term we are adding (n=0) Sum of all terms up to this one Term we are adding (n=1) Sum of all terms up to this one

!The following figures are from the presentation on Fourier transform in Magnetic Resonance Imaging “The Fourier
Transform and its Applications” by Branimir Vasili¢. The author is grateful to Branimir for making the slides available.
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Surm of all terms up to this one

Amplitudes of
Fourier components: 2
S o
o
oo
ERE] L
2 2
1.5 1.5
) 1
a5 0.5
U AVAVAVAVAVAVAVAVAVAVS 0
-2 N 1 2 -2 1 0 1 2

f
Term we are adding (n=10)

t
Sum of all terms up to this one
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Fourier components:
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Surm of all terms up to this one
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Amplitudes of

Amplitudes of
Fourier components: Z Fourier components: Z
s, s,
o o
u Im/ il — | e e
| L] | L]
B A P T B A P T
w w
2 2 2 2
1.5 15 1.5 15
FoN 1 FoN 1
a5 0.5 a5 0.5
[1] RN N A AW AV a 1] PAVAVAVAVAVAVATAVAVAVAVAVAVAN 0
-2 -1 1 2 -2 ~1 1 2 -2 -1 1 2 -2 ~1 1 2
t t t t
Term we are adding (n=13) Sum of all terms up to this one Term we are adding (n=14) Sum of all terms up to this one

Amplitudes of 0;
Fourier components: 0'6
S, o Gibbs ringing caused
oz by sharp edges
N 'i'i"._‘._
- 20 43 Loie) &1 e 120
W
i A
2 2 >
1.5 1.5
S 1 1
0.5 0.5
0 ] e —
-2 -1 0 1 2 -2 -1 0 1 2
¥ t
Term we are adding (n=127) Sum of all terms up to this one

Discrete versus Continuous Functions.

In the previous examples, the function in frequency-domain was a continuous function. In appli-
cations, it is impossible to collect infinitely many infinitely dense samples. As a consequence, certain
error may come from sampling just finite number of points taken over a finite interval. Thus, it is

relevant to keep in mind what effects in time (resp. frequency) domain may have finite and discrete
samples of frequencies (resp. time).

frequency-domain function in time-domain | effects in time-domain
infinite continuous set of frequencies non-periodic function none
finite continuous set of frequencies non-periodic function | Gibbs ringing, blurring
infinite number of discrete frequencies periodic function aliasing
finite number of discrete frequencies periodic function aliasing, Gibbs ringing,
blurring
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In the following consideration, assume that the sample consists of frequencies and that all the
values lie on the graph of a sinc function. The goal is to reconstruct the boxcar function in the
time-domain. The following four figures illustrate each of the four scenarios from the table.

If we sum an infinite range of continuous frequencies we get an exact version If we sum a finite range of continous frequencies we get an approximate
of the initial function /(i) version of the function f{z) that is blurred and has Gibbs ringing
\
2 2
0s o8
05 1.5 s 1.5
sfw) iy s(a) o,
9z o5 L5 as
. \//\V ) : Vf\v :
N
= -] =0 s R un &0 -5 -4 -2 o 2 4 B8 e =0 50 a Lo & -8 -1 -2 0 4 8
[] i1 [41) r
If we sum an infinite range of discrete frequencies we get an exact version of If we sum a finite number of discrete frequencies we get an infinite number of
the function j7z) repeated an infinite number of times approximate copies of the function ffz) that are blurred and have Gibbs ringing

The infinite repetition of /fz} is called aliasing

as as

sto”| fo stor”| Iz

as o5

N LR A T D

ozf -0z
3 El E3 70 w 3 5 7 B o B @ ® 5 El E3 W 0 & 5 e B o 2 o« &

4]
finite frequency range -3 blurring
sharp edges - Gibbs ringing
discrete frequencies - aliasing

Application in Magnetic Resonance Imaging.

A MRI scanner consists of a large superconducting magnet and coils that
generate temporally and spatially varying magnetic fields (no ionizing radiation)

The Fourier transform is prominently used in
Magnetic Resonance Imaging (MRI). The fist fig-
ure represents a typical MRI scanner. The scan-
ner samples spacial frequencies and creates the
Fourier transform of the image we would like
to obtain. The inverse Fourier transform con-
verts the measured signal (input) into the recon-
structed image (output).

In the following two figures, the image on the right represents the amplitude of the scanned input
signal. The image on the left represents the output - the image of a human wrist, more precisely,
the density of protons in a human wrist. The whiter area on the image correspond to the fat rich
regions. The darker area on the image correspond to the water rich regions.
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The signal measured by a MRI scanner is a set of
discrete samples of the
Faurier transform of the
density of protons (water or fat) of the imaged object

human wrist Fourier transform of the image

brighter regions are fat rich central peak corresponds to zero
darker regions are water rich spatial frequency
The image is produced by summing ‘
all plane waves (harmonic functions)
weighted by the appropriate amplitudes \
!

Each point on the input images corresponds
to certain frequency. Two smaller figures on the
right side represent the components of the inverse
transforms at two highlighted frequencies. The
output image is created by combining many such
images - one for each sampled frequency in fact.

The last figure represent the output with high (first pair of images) and low frequencies (second
pair of images) removed.

If high frequencies are removed (low-pass filter), the image becomes blurred and only shows the
rough shape of the object.

If low frequencies are removed (high-pass filter), the image is sharp but intensity variations are
lost.

Practice Problems.

1. Find the Fourier transform of f(t) =e™* t > 0, f(t) = 0 otherwise.
2. Find Fourier cosine transformation of the function from the previous problem.

3. Find cosine Fourier transform of f(¢) =2t — 3 for 0 < ¢t < 3/2, f(z) = 0 otherwise.
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4. If
a

fa(t) = prs)

the graph of f has a peak at 0. Since f(0) = %, the height is conversely proportional to a. The
Fourier transform of f can shown to be

Fy(w) = /7 /2e= M.

Graph F,(w) for several values of a and make conclusion how values of a impact the graph of
F,.

o0 — <w<
5. Solve the equation [~ f(t)costw dt = { l-w 0<w<1

0 w>1
Solutions.
_ 1 ot —iwt _ —1 —(14iw)t|oo __ 1
1. Flw) = «/_27IO et = Var(1+iw) © (rielge = V2r(1+iw)

2. F(w) = ffo Ycoswt dt. Using two integration by parts with u = e~*, one obtains that

w) = \/;(;e sinwt|g+L [F e sinwt dt) = \/2(0—‘%6_'5 coswit|gF—25 [T e~ coswt dt) =
\/g( — i\/fF . Solving for F'(w) gives your F(w)(1 + ﬁ) = \/gé Multiply by w? to

get F(w) \/7:>F \/;uﬂ-i-l
f 522t — 3 coswtdt:\/;(zt 3:5111u)t|3/2—2 Og/zsinwtdt):
\/g(()—l—ﬁcoswt\o ):\/gﬁ(cos%"— ):w%\(f(cos 2 —1).

4. If a is small, then f, has a larger peak. In this case F}, is more spread out and flattened. If a
is large, f, is spread out and the height of the peak is not large. In this case, F, has a sharp
peak and converges to zero fast.

.°°
E

5. Use inverse cosine Fourier transform. First multiply with \/g to match the definition of the
transform. Then the left side is exactly the Fourier cosine transform of f(t). So we can get f(t)

as the inverse transform of the left side of the equation multiplied by

(t) = \/%\/gfol(l —w)coswt dw = 2(¥ sinwt|f + %fol sinwt dt) = 2(0 — % coswt|y) =
2 (—cost+1) = 2;(1 — cost).

—
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