

Where do we draw a circle?
 Properties of a circle:

 A circle is defined as a set of points that are all the given
distance (xc,yc). This distance relationship is expressed by the
Pythagorean theorem in Cartesian coordinates as

 (x – xc)
2 + (y – yc)

2 = r2

 We could use this equation to calculate the points on the circle
circumference by stepping along x-axis in unit steps from xc-r to
xc+r and calculate the corresponding y values at each position as

 y = yc +(-) (r2 – (xc –x)2)1/2

 This is not the best method:

 Considerable amount of computation

 Spacing between plotted pixels is not uniform

Circle Drawing Methods

a)Cartesian Coordinates Method

Also known as square root method

 Distance relationship expressed by

the Pythagorean theorem in Cartesian

coordinates as:

 (x – xc)
2 + (y – yc)

2 = r2

 So, when stepping along the x axis in

units intervals from xc to xc+ r and

calculate the corresponding y coordinate

With y = yc +(-) (r2 – (xc –x)2)1/2

a)Cartesian Coordinates Method

a)Cartesian Coordinates Method
Begin

 xc , yc --- Circle Center

 r -- Radius

 x , y --- point on circle

 for (x = xc–r to x = xc + r)

begin

 y = Square root((r2-(xc - x)2)

 point(x, yc + y);

 point(x, yc - y);

 end for

End

a)Cartesian Coordinates Method
Disadvantages:

 Considerable amount of calculation (squares and square roots)

 Spacing between pixel is not uniform around the circle

 Based on the upper octant (between y axis and 45o line), circles

increases faster along x axis compared to y axis. Since we are

stepping along x axis, pixels with successive x co-ordinate positions

can have the same y coordinate – reduce or no gap

 In the lower octant , the circle increases faster along the y axis

compared to x axis. Pixels with successive y co-ordinates need to

have the same x co ordinates to avoid gaps. Since , we are using x

axis in unit of intervals, so each pixel has a unique y-coordinates –

bigger gap.

b) Polar method Enhancement:

 Also known as Trigonometric Functions

 The equation of a circle is written in the polar

coordinates r and θ as

x = xc + r.cosθ

y = yc + r.sinθ

 x and y are the coordinates of a point on the

circumference, i.e. the end point of a line

drawn from the center of the circle to the

circumference – the radius.

b) Polar method Enhancement:

b) Polar method Enhancement:
 Begin

 xc , yc --- Circle Center

 r -- Radius

 x , y --- point on circle

 theta -- angle

 dTheta --- angle change

 dTheta = 1/r

 for (theta =0 to Pi*2 step = dTheta)

 begin

 x=xc + r * Cos(theta)

 y=yc + r * Sin(theta)

 point(x , y)

 endfor

end

c)Polar method speedup (Octanes)

 We only need to calculate the values on the border of
the circle in the first octant. The other values may be
determined by symmetry. Assume a circle of radius r
with center at (0,0).

c) Polar method speedup (Octanes):
Begin

 xc , yc --- Circle Center

 r -- Radius

 x , y --- point on circle

 theta -- angle

 dTheta --- angle change

 dTheta = 1/r

 while (x > y)

 begin

 x=xc + r * Cos(theta)

 y=yc + r * Sin(theta)

 point(x ,y) point(x,-y)

 point(-x ,y) point(-x,-y)

 point(y ,x) point(y,-x)

 point(-y ,x) point(-y,-x)

 endwhile

end

d)Midpoint circle algorithm

 In computer graphics , the midpoint circle algorithm is an
algorithm used to determine the points needed for
drawing a circle.

d)Midpoint circle algorithm
 The algorithm

 he algorithm starts with the circle equation . For simplicity,
assume the center of the circle is at . We consider first only
the first octant and draw a curve which starts at point and
proceeds counterclockwise, reaching the angle of 45.

 The "fast" direction here (the basis vector with the greater
increase in value) is the direction. The algorithm always
takes a step in the positive direction (upwards), and
occasionally takes a step in the "slow" direction (the
negative direction).

 From the circle equation we obtain the transformed
equation , where is computed only a single time during
initialization.

d)Midpoint circle algorithm

 Let the points on the circle be a sequence of coordinates
of the vector to the point (in the usual basis). Let denote
the point index, with assigned to the point .

 For each point, the following holds:

 Xn
2 + Yn

2 = r2

 This can be rearranged as follows:

 Xn
2 = r2 - Yn

2

 And likewise for the next point:

 Xn+1
2 = r2 - Yn+1

2

d)Midpoint circle algorithm

 In general, it is true that:

 Yn+1
2 = (Yn

2 +1) 2

 = Yn
2 +2 Yn

2 +1

 Xn+1
2 =r2 - Yn

2 +2 Yn
2 +1

 So we refashion our next-point-equation into a recursive
one by substituting

 Xn
2 =r2 - Yn

2

 Xn+1
2 = Xn

2 + 2 Yn
2 +1

d)Midpoint circle algorithm
 Because of the continuity of a circle and because the maxima

along both axes is the same, we know we will not be skipping x
points as we advance in the sequence. Usually we will stay on the
same x coordinate, and sometimes advance by one.

 Additionally, we need to add the midpoint coordinates when
setting a pixel. These frequent integer additions do not limit the
performance much, as we can spare those square (root)
computations in the inner loop in turn. Again the zero in the
transformed circle equation is replaced by the error term.

 The initialization of the error term is derived from an offset of ½
pixel at the start. Until the intersection with the perpendicular
line, this leads to an accumulated value of in the error term, so
that this value is used for initialization.

d)Midpoint circle algorithm

 The frequent computations of squares in the circle
equation, trigonometric expressions and square roots can
again be avoided by dissolving everything into single steps
and using recursive computation of the quadratic terms
from the preceding iterations.

 Below is an implementation of the Bresenham Algorithm
for a full circle in C. Here another variable for recursive
computation of the quadratic terms is used, which

corresponds with the term 2n+1 above. It just has to be

increased by 2 from one step to the next:

d)Midpoint circle algorithm

void rasterCircle(int x0, int y0, int radius)
{
 int f = 1 - radius;
 int ddF_x = 1;
 int ddF_y = -2 * radius;
 int x = 0;
 int y = radius;

 setPixel(x0, y0 + radius);
 setPixel(x0, y0 - radius);
 setPixel(x0 + radius, y0);
 setPixel(x0 - radius, y0);

d)Midpoint circle algorithm
 while(x < y)

 {

 // ddF_x == 2 * x + 1;

 // ddF_y == -2 * y;

 // f == x*x + y*y - radius*radius + 2*x - y + 1;

 if(f >= 0)

 {

 y--;

 ddF_y += 2;

 f += ddF_y;

 }

d)Midpoint circle algorithm

 x++;
 ddF_x += 2;
 f += ddF_x;
 setPixel(x0 + x, y0 + y);
 setPixel(x0 - x, y0 + y);
 setPixel(x0 + x, y0 - y);
 setPixel(x0 - x, y0 - y);
 setPixel(x0 + y, y0 + x);
 setPixel(x0 - y, y0 + x);
 setPixel(x0 + y, y0 - x);
 setPixel(x0 - y, y0 - x);
 }
}

