


Where do we draw a circle? 
 Properties of a circle: 

 A circle is defined as a set of points that are all the given 
distance (xc,yc). This distance relationship is expressed by the 
Pythagorean theorem in Cartesian coordinates as 

                (x – xc)
2 + (y – yc) 

2 = r2 

 We could use this equation to calculate the points on the circle 
circumference by stepping along x-axis in unit steps from xc-r to 
xc+r and calculate the corresponding y values at each position as 

                 y = yc  +(- ) (r2 – (xc –x )2)1/2 

 This is not the best method: 

 Considerable amount of computation 

 Spacing between plotted pixels is not uniform 

 

 



Circle Drawing Methods 



a)Cartesian Coordinates Method 

Also known as square root method 

 Distance relationship expressed by 

the Pythagorean theorem in Cartesian 

coordinates as: 

 (x – xc)
2 + (y – yc) 

2 = r2 

 So, when stepping along the x axis in 

units intervals from xc to xc+ r and 

calculate the corresponding y coordinate 

With   y = yc  +(- ) (r2 – (xc –x )2)1/2 



a)Cartesian Coordinates Method 



a)Cartesian Coordinates Method 
Begin 

       xc , yc --- Circle Center 

     r -- Radius  

     x , y --- point on circle     

    for (x = xc–r to x = xc + r) 

begin  

          y = Square root((r2-(xc - x)2) 

          point(x, yc + y); 

          point(x, yc - y); 

 end for 

End 



a)Cartesian Coordinates Method 
Disadvantages: 

  Considerable amount of calculation (squares and square roots) 

  Spacing between pixel is not uniform around the circle 

  Based on the upper octant (between y axis and 45o line), circles 

increases faster along x axis compared to y axis. Since we are 

stepping along x axis, pixels with successive x co-ordinate positions 

can have the same y coordinate – reduce or no gap 

 In the lower octant , the circle increases faster along the y axis 

compared to x axis. Pixels with successive y co-ordinates need to 

have the same x co ordinates to avoid gaps. Since , we are using x 

axis in unit of intervals, so each pixel has a unique y-coordinates – 

bigger gap. 



b) Polar method Enhancement: 

  Also known as Trigonometric Functions 

 The equation of a circle is written in the polar 

coordinates r and θ as 

x = xc + r.cosθ 

y = yc + r.sinθ 

  x and y are the coordinates of a point on the 

circumference, i.e. the end point of a line 

drawn from the center of the circle to the 

circumference – the radius. 



b) Polar method Enhancement: 



b) Polar method Enhancement: 
 Begin 

       xc , yc --- Circle Center 

     r -- Radius  

     x , y --- point on circle  

  theta  -- angle 

      dTheta --- angle change 

     dTheta = 1/r  

    for (theta =0 to Pi*2  step = dTheta) 

    begin  

     x=xc + r * Cos(theta) 

  y=yc + r * Sin(theta) 

  point(x , y) 

    endfor 

end 

  

  



 
c)Polar method speedup ( Octanes ) 

 We only need to calculate the values on the border of 
the circle in the first octant.  The other values may be 
determined by symmetry.  Assume a circle of radius r 
with center at (0,0). 
 



c) Polar method speedup ( Octanes ): 
Begin 

       xc , yc --- Circle Center 

     r -- Radius  

     x , y --- point on circle  

  theta  -- angle 

      dTheta --- angle change 

     dTheta = 1/r  

     while (x > y) 

    begin 

  x=xc + r * Cos(theta) 

  y=yc + r * Sin(theta) 

  point(x ,y) point(x,-y) 

  point(-x ,y) point(-x,-y) 

  point(y ,x) point(y,-x) 

  point(-y ,x) point(-y,-x) 

     endwhile 

end 

  



d)Midpoint circle algorithm 

 In computer graphics , the midpoint circle algorithm is an 
algorithm used to determine the points needed for 
drawing a circle. 



d)Midpoint circle algorithm 
 The algorithm 

 he algorithm starts with the circle equation . For simplicity, 
assume the center of the circle is at . We consider first only 
the first octant and draw a curve which starts at point and 
proceeds counterclockwise, reaching the angle of 45. 

 The "fast" direction here (the basis vector with the greater 
increase in value) is the direction. The algorithm always 
takes a step in the positive direction (upwards), and 
occasionally takes a step in the "slow" direction (the 
negative direction). 

 From the circle equation we obtain the transformed 
equation , where is computed only a single time during 
initialization. 

 



d)Midpoint circle algorithm 

 Let the points on the circle be a sequence of coordinates 
of the vector to the point (in the usual basis). Let denote 
the point index, with assigned to the point . 

 For each point, the following holds: 

          Xn
2  + Yn

2  = r2    

 This can be rearranged as follows: 

         Xn
2  =  r2  -  Yn

2 

 And likewise for the next point: 

        Xn+1
2   =  r2  -  Yn+1

2 

 



d)Midpoint circle algorithm 

 In general, it is true that: 

        Yn+1
2  =  (Yn

2   +1) 2 

                           = Yn
2     +2 Yn

2     +1 

         Xn+1
2  =r2  -  Yn

2     +2 Yn
2     +1 

 So we refashion our next-point-equation into a recursive 
one by substituting  

          Xn
2  =r2  -  Yn

2  

          Xn+1
2  =   Xn

2     + 2 Yn
2     +1 

 



d)Midpoint circle algorithm 
 Because of the continuity of a circle and because the maxima 

along both axes is the same, we know we will not be skipping x 
points as we advance in the sequence. Usually we will stay on the 
same x coordinate, and sometimes advance by one. 

 Additionally, we need to add the midpoint coordinates when 
setting a pixel. These frequent integer additions do not limit the 
performance much, as we can spare those square (root) 
computations in the inner loop in turn. Again the zero in the 
transformed circle equation is replaced by the error term. 

 The initialization of the error term is derived from an offset of ½ 
pixel at the start. Until the intersection with the perpendicular 
line, this leads to an accumulated value of in the error term, so 
that this value is used for initialization. 



d)Midpoint circle algorithm 

 The frequent computations of squares in the circle 
equation, trigonometric expressions and square roots can 
again be avoided by dissolving everything into single steps 
and using recursive computation of the quadratic terms 
from the preceding iterations. 

 Below is an implementation of the Bresenham Algorithm 
for a full circle in C. Here another variable for recursive 
computation of the quadratic terms is used, which 

corresponds with the term 2n+1 above. It just has to be 

increased by 2 from one step to the next: 

 

 



d)Midpoint circle algorithm 

void rasterCircle(int x0, int y0, int radius) 
{ 
  int f = 1 - radius; 
  int ddF_x = 1; 
  int ddF_y = -2 * radius; 
  int x = 0; 
  int y = radius; 
  
  setPixel(x0, y0 + radius); 
  setPixel(x0, y0 - radius); 
  setPixel(x0 + radius, y0); 
  setPixel(x0 - radius, y0); 
  



d)Midpoint circle algorithm 
 while(x < y) 

  { 

    // ddF_x == 2 * x + 1; 

    // ddF_y == -2 * y; 

    // f == x*x + y*y - radius*radius + 2*x - y + 1; 

    if(f >= 0)  

    { 

      y--; 

      ddF_y += 2; 

      f += ddF_y; 

    } 



d)Midpoint circle algorithm 

 x++; 
    ddF_x += 2; 
    f += ddF_x;     
    setPixel(x0 + x, y0 + y); 
    setPixel(x0 - x, y0 + y); 
    setPixel(x0 + x, y0 - y); 
    setPixel(x0 - x, y0 - y); 
    setPixel(x0 + y, y0 + x); 
    setPixel(x0 - y, y0 + x); 
    setPixel(x0 + y, y0 - x); 
    setPixel(x0 - y, y0 - x); 
  } 
} 




