
1

lec3:Nondeterministic finite state

automata

2

1.introduction

Nondeterminism is a useful concept that has great impact on the theory of

computation. When the machine is in a given state and reads the next input symbol,

we know what the next state will be -it is determined this called deterministic

computation but in a nondeterministic machine, several choices may exit for the next

state at any point.

Nondeterminism is a generalization of determinism ,so every deterministic finite

automaton is automatically a nondeterministic finite automaton. The different

between a deterministic finite automation and a nondeterministic finite automaton.

1- every state of always has exactly one exiting transition arrow for each symbol in

the alphabet but the nondeterministic violates that rule.

2-In DFA, label on the transition arrow are symbols from the alphabet .this NFA has

an arrow with the label 𝜖 , an NFA may have arrows labeled with members of

alphabet or 𝜖. Zero, one , or many arrows may exit from each state with the label 𝜖

we are running an NFA on an input string and come to a state with multiple ways to

proceed, the machine splits into multiple copies of itself and follows all the

possibilities in parallel. Each copy of the machine takes one of the possible ways to

proceed and continues as before. if there are subsequent choices, the machine splits

again. if the next input symbol dose not appear on any of the arrow exiting the state

occupied by a copy of the machine ,that copy of the machine dies, along with the

branch of the computation associated with it. if any one of these copies of the machine

is an accept state at the end of the input, the NFA accepts the input string. if state with

an 𝜖 symbol on an exiting arrow is encountered, something similar happens. without

reading any input, the machine splits into multiple copies, one following each of the

exiting 𝜖-label arrows and one staying at the current state.

Nondeterminism may be viewed as a kind of parallel computation wherein multiple

independent "processes" or "thread" can be running concurrently. when the NFA

splits to following several choices, that corresponds to a process "forking" into sveral

children, each proceeding separately. if at least one of these processes accepts, then te

entire computation accepts.

Another way to think of a nondeterministic computation is as tree of possibilities. the

root of the tree corresponds to the start of the computation. Every branching point in

the tree corresponds to a point in the computation at which the machine has multiple

choices. the machine accepts if at least one of the computation branches ends in an

accept state. as show below.

3

Example: state q1 has one exiting arrow for 0, but it has two for 1; state q2 has one

arrow for 0, but it has none for 1. in an NDF a state may have zero, one, or many

exiting arrows for each alphabet symbol .as show in figure below machine N1

.

4

the computation of N1 on input 010110 is depicted in the following

Example: Consider the nondeterministic finite automaton of Figure below, which accepts all

strings that contain one of three possible substrings: 000, 111, or 1100.

The computation tree on the input string 01011000 is de-picted in Figure below. (The

paths arked with an asterisk denote paths where the automaton is stuck in a state

because it had no transition available.) There are two accepting paths out of ten,

5

corresponding to the detection of the substrings 000 and 1100. The nondeterministic

finite automaton thus accepts 01011000 because there is at least one way (here two)

for it to do so.

Example : consider the following NFA below that has an input alphabet {0}

consisting of a single symbol. An alphabet containing only symbol is called a unary

alphabet.

this machine demonstrates the convenience of having 𝜖 arrows. It accepts all strings

6

of the from 0
k

 where k is a multiple of 2 or 3. for example machine accepts the strings

𝜖, 00, 000, 0000, and 000000, but not 0 or 00000.

Example: we given of NFA in following figure below, practice with it to satisfy

yourself that it accept the string 𝜖, a, baba, and baa, but that it doesn't accept the string

b, bb, and babba.

2. Formal Definition of a NFA

the formal definition of a nondeterministic finite automaton is similar to that of a

deterministic finite automaton. Both have states, an input alphabet, transition function,

start state, and a collection of accept states..

7

Example :

....

the formal definition of computation for an NFA is similar to that for a DFA. Let

N=(Q, ∑, δ,q0, F) be an NFA and ω a string over the alphabet ∑. then w say that

accept ω if we can write ω as

 ω=y1y2y.......ym where each yi is a member of ∑ε and a sequence of state r0,

r1,,rm.

exists in Q with three conditions:

condition 1 says that the machine starts out in the start state. condition 2 says that

state ri+1 is one of the allowable next states when N is in state ri and reading yi+1 .

Observe that δ(ri, yi+1,) is the set of allowable next states and so we say that ri+1 is a

member of that set.

8

3. Equivalence of NFA to DFA

Deterministic and nondeterministic finite automata recognize the same class of

languages. Such equivalence is both surprising and useful. it is surprising because

NFA appear to have more power than DAF, so we might expect that NFA recognize

more language. Say that two machine are equivalent if they recognize the same

language. every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

the definition nondeterministic finite automata include deterministic ones as a

special case the case where the number of transitions defined for each pair of current

state and current input symbol never exceeds one. Thus any language that can be

accepted by a deterministic finite automaton can be accepted by a nondeterministic

one the same machine.

we construct a deterministic one that mimics the behavior of the nondeterministic

machine. In particular, the deterministic machine uses its state to keep track of all of

the possible states in which the nondeterministic machine could find itself after

reading the same string.

Theorem : For every nondeterministic finite automaton, there exists an equivalent

deterministic finite automaton (i.e., one that accepts the same language).

Proof. Let the nondeterministic finite automaton be given by the five- tuple (Q, ∑,

δ,q0, F). We construct an equivalent deterministic automaton (Q
'
, ∑

 '
, δ

'
,q0

'
, F

'
) as

follows:

Example: Consider the nondeterministic finite automaton given by

and illustrated in Figure below (a). The corresponding deterministic finite automaton

is given by

9

and illustrated in Figure below (b) (note that state ∅ is unreachable).

Thus the conversion of a nondeterministic automaton to a deterministic one creates a

machine, the states of which are all the subsets of the set of states of the

nondeterministic automaton. The conversion takes a nondeterministic automaton with

n states and creates a deterministic automaton with 2n states, an exponential increase.

we saw briefly, many of these states may be useless, because they are unreachable

from the start state; in particular, the empty state is always unreachable. In general,

the conversion may create any number of unreachable states,

Example: convert NFA to DFA for machine below

10

Example: converting NFA to DFA for machine below:

a:NFA

b:DFA

11

c:DFA after remove unnecessary state

When generating a deterministic automaton from a given nondeterministic one, we

can avoid generating unreachable states by using an iterative approach based on

reachability : begin with the initial state of the nondeterministic automaton and

proceed outward to those states reachable by the nondeterministic automaton. This

process will generate only useful states—states reachable from the start state—and so

may be considerably more efficient than the brute-force generation of all subsets.

