‘ lec 5:Regular Expression \

1.Regular Expression

Regular Expression have an important role in computer science
applications. in application involving text, users may want to search for
strings that satisfy certain pattern. regular expression provided a powerful
method for describing such pattern such as AWK and GREP in UNIX,

Regular Expression is a set of symbols, Thus if alphabet= {a, b}, then
aab, a, baba, bbbbb, and baaaaa would all be strings of symbols of

alphabet.

Regular expressions can be used to define languages. A regular
expression is like a "pattern"; strings that match the pattern are in the
language, strings that do not match the pattern are not in the language.
The construction of regular expressions is defined recursively, starting
with primitive regular expressions, which can be composed using typical

operators to form more complex regular expressions.

In addition we include an empty string denoted by () which has no
symbols in it.
2.0Operation on Language
Regular operations on languages (sets of strings). Suppose L and K are languages.
s Union: LUK = {z oL or ze 1\'}.
o Conecatenction: Lo K — LK — {.:r‘y ‘;e- €L and yeK }

o Star (Kleene star):

L* = {rtrlu'g. oWy W, .., wy, € L and n > {)}.

We (hopefully) all understand what union does. The other two have some subtleties. Let
L = {under,over}, and K = {ground,water,work}.

Then
LK = {underground, underwater, undervork, overground, overwater, overwork} .

Similarly,

groundwater, groundwork, workground,

€, ground, water, work, groundground,
K* =
waterworkwork,. ..

3. Definition of Regular Expressions_:

Let us fix an alphabet Y. Here are the basic regular expression.

regex | conditions | set represented
a ac kX {a}

€ e}

] {}

Thus, ; represents the empty language. But _ represents that language which

has the empty word as its only word in the language..

In particular, for a regular expression hexpi, we will use the notation L(hexpi)

to denote the language associated with this regular expression. Thus,
L(e)={e} and L(®)={};

which are two different languages.

Suppose that L(R) is the language represented by the regular expression R.

Here are recursive rules that make complex regular expressions out of simpler

ones.

regex conditions set represented
RUSor R+ S | R, Sregexes | L(R)UL(S)
Ro S or RS R, S regexes | L(R)L(S)

R* R a regex L(R)*

And some handy shorthand notation:

regex | conditions | set represented

R* | Raregex | L(R)L(R)*

b} b}

— —

Some specific boundary case examples:
1. Re=R=¢R.
2. RO=0=0R.
This is a bit confusing, so let us see why this is true, recall that

R0 = {.ry ‘:r € Rand y € ('}}‘

But the empty set () does not contain any element, and as such, no concatenated string can be created.
Namely, its the empty language.

3. RUD =R (just like with any set).

4, RUe=€eUR.

This expression can not always be simplified, since ¢ might not be in the language L(R).

5. 1" = {e}, since the empty word is always contain in the language generated by the star operator.

Examples of Kleene star:
(1*) is the set of strings {¢, 1, 11, 111, 1111, 11111, etc. }
(1100)* is the set of strings {e, 1100, 11001100, 110011001100, etc. }
(00+11)* is the set of strings {¢ , 00, 11, 0000, 0011, 1100, 1111, 000000,
000011, 001100, etc. }
(0+1)* is all possible strings of zeros and ones, often written as > * where
>.={0,1}
(0+1)* (00+11) is all strings of zeros and ones that end with either 00 or
11.
(w)+ is a shorthand for (w)(w)* w is any string or expression and the
superscript plus, +

Concatenation:
Notation to the concatenation: . (The dot.):

iIf L1={x, xxx} and L2 = {xx} So (L1.L2) means L1 concatenated L2
and it is L10oL2 = {XXX, XXXXX}

Examplel:

L1 ={a, b}.

L2 = {c, d}.

L1.L2 = {ac, ad, bc, bd}
Note: ab differ from ba.

Example 2:

2= {x}.

L1 = {set of all odd words over) with odd length}.
L1 = {set of all even words over with odd length}.
L1= {X, XXX, XXXXX, XXXXXXX...... }.

L2={ , XX, XXXX, XXXXXX...}.

L1.L2 = {x, XXX, XXXXX, XXXXXXX...}.

Example 3:

L1 = {X, xxx}.

L2 = {xx}.

L1.L2 = {XxX, XXXXX}.

Some rules on concatenation:
AX =X

L1.L2 = {set of elements}

Example 4:

A = {a,b} // the alphabet is composed of a and b
A* = {l, a,b,aa,ab,ba,bb,aaa,aab,...}

The symbol * is called the Kleene star.
@(empty set)

& (empty string)

Given regular expressions x and y, X + y is a regular expression

representing the set of all strings in either x or y (set union)
x={ab}y={cd}x+y={abcd}

Example 5:

Let A={0,1}, W1 =00110011, W2 = 00000
W1W?2 = 0011001100000

W2W1 = 0000000110011

W1x =W1=00110011

AW2 = W2 = 00000

x ={a,b}y={c,d} xy ={ac, ad, bc, bd}

Note: (a+Db)* = (a*b*)*

More Examples of regular expressions

Describe the language = what is the output (words, strings) of the

following RE

Regular expression output(set of strings)
A {}

A* {\}

a {a}

aa {aa}

a* {€, a, aa, aaa,}
aa* {4a, aa, aaq, ... }

a+ {4, aa, aaa, ...}

ba+ { ba, baa, baaa, ...}
(ba)+ { ba, baba, bababa, ...}
(alb) {ab}

alb* {a 1, b, bb, bbb, ...}

(ab)* {\, a, b, aa, ab, ba, bb, ... }

aa(ba)*bb { aabb, aababb, aabababb, ... }

(a+a) {a}

(a+Db) {a, b}

(a+b)2 (a+b)(a+ b) =={aa, ab, ba, bb}

(a+b+c) {a, b, c}

(a+b)* { ¢, a, b, aa, bb, ab, ba, aaa, bbb,
aab, bba,}

(abc) {abc}

(At a) bc {bc, abc}

ab* {a, ab, abb, abbb, ...}

(ab)* {)\, ab, abab, ababab, ...}

a+b* {a, A, b, bb, bbb, ...}

a(a+b)* {a, aa, ab, aaa, abb, aba, abaa, ...} (a

+b)*a(a+hb)* {a, aaa, aab, baa, bab, ...}

(a+r)* (@* ={\, a, aa, aaa,}

x*(@a+b)+(@a+hb) x* (a+b)

X*y+ty X*y

(x + Dx* X*(x+1)=x*

x+D(x+D*(x+1) X*

note: symbol A same mean epsilon symbol (&)

