
14 

 

Description of The Algorithm 

 

Dijkstra’s algorithm works by solving the sub-problem  k,  which  computes  the  shortest  path  

from the  source  to vertices among the k closest vertices to the source. For the dijkstra’s 

algorithm to work it should be directed- weighted graph and the edges should be non-negative. 

If the edges are negative then the actual shortest path cannot be obtained. 

 

 

General Description 

Suppose we want to find a shortest path from a given node s to other nodes in a network (one-to-

all shortest path problem) 

 Dijkstra’s algorithm solves such a problem 

 It finds the shortest path from a given node s to all other nodes in the network 

 Node s is called a starting node or an initial node 

 How is the algorithm achieving this? 

 Dijkstra’s algorithm starts by assigning some initial values for the distances from node s 

and to every other node in the network 

 It operates in steps, where at each step the algorithm improves the distance values. 

 At each step, the shortest distance from node s to another node is determined 

 

 

Formal Description 

The algorithm characterizes each node by its state.The state of a node consists of two features: 

 Distance value and status label 

 Distance value of a node is a scalar representing an estimate of the its distance from node s. 

 Status label is an attribute specifying whether the distance value of a node is equal to the 

shortest distance to node s or not. 

 The status label of a node is Permanent if its distance value is equal to the shortest distance 

from node s 

 Otherwise, the status label of a node is Temporary 

The algorithm maintains and step-by-step updates the states of the nodes. At each step one node 

is designated as current 

 

Algorithm Steps 

Step 1. Initialization 

 Assign the zero distance value to node s, and label it as Permanent. [The state of node s is 

(0, p)] 

 Assign to every node a distance value of ∞ and label them as Temporary. [The state of every 

other node is (∞, t)] 

 Designate the node s as the current node 

 

Step 2. Distance Value Update and Current Node Designation Update 

Let i be the index of the current node. 

(1) Find the set J of nodes with temporary labels that can be reached from the current node i 

by a link (i, j). Update the distance values of these nodes. 



14 

 

 For each j ∈ J, the distance value dj of node j is updated as follows 

                   new dj = min{dj, di +cij} 

where cij is the cost of link (i, j), as given in the network problem. 

(2) Determine a node j that has the smallest distance value dj among all nodes j∈ J, find j* such 

that   

 
(3) Change the label of node j* to permanent and designate this node as the current node. 

 

 

Step 3. Termination Criterion 

If all nodes that can be reached from node s have been permanently labeled, then stop - we are 

done. 

If we cannot reach any temporary labeled node from the current node, then all the temporary 

labels become permanent - we are done. 

Otherwise, go to Step 2. 

 

 

Dijkstra's Algorithm - Pseudocode 

dist[s] ←0           (distance to source vertex is zero) 

for  all v ∈ V–{s} 

        do  dist[v] ←∞   (set all other distances to infinity)  

S←∅     (S, the set of visited vertices is initially empty)  

Q←V      (Q, the queue initially contains all vertices)                

while Q ≠ ∅    (while the queue is not empty)  

do   u ← mindistance(Q,dist) (select the element of Q with the min. distance)  

      S←S ∪ {u}    (add u to list of visited vertices)  

       for all v ∈  neighbors[u]    

              do  if   dist[v] > dist[u] + w(u, v)   (if new shortest path found) 

                         then      d[v] ←d[u] + w(u, v) (set new value of shortest path) 

  (if desired, add traceback code) 

return dist 

 

 

 

Example: We want to find the shortest path from node 1 to the all the other nodes in the 

network using Dijkstra’s algorithm 
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Step 1- Initialization  

 Node 1 is designated as the current node 

 The state of node 1 is (0, p) 

 Every other node has state (∞, t) 

 
Step 2 

 

Nodes 2, 3,and 6 can be reached from the current node 1 

 Update distance values for these nodes 

 

d2 = min{∞, 0+7} = 7 

d3 = min{∞, 0+9} = 9 

d6 = min{∞, 0+14} = 14 
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 Now, among the nodes 2, 3, and 6, node 2 has the smallest distance value 

 The status label of node 2 changes to permanent, so its state is (7, p), while the status of 3 

and 6 remains temporary 

  Node 2 becomes the current node 

 
Step 3 

Another Implementation of Step 2 

 Nodes 3 and 4 can be reached from the current node 2 

 Update distance values for these nodes 

   d3 = min{9, 7+10} = 9 

   d4 = min{∞, 7+15} = 22 

 

 Now, between the nodes 3 and 4 node 3 has the smallest distance value 

 The status label of node 3 changes to permanent, while the status of 4 remains temporary 
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 Node 3 becomes the current node 

We are not done (Step 3 fails), so we perform another Step 2 

 
Another Step 2 

 Nodes 6 and 4 can be reached from the current node 3 

 Update distance values for them 

   d4 = min{22, 9+11} = 20 

   d6 = min{14, 9+2} = 11 

 

 Now, between the nodes 6 and 4 node 6 has the smallest distance value 

 The status label of node 6 changes to permanent, while the status of 4 remains temporary 

 Node 6 becomes the current node we are not done (Step 3 fails), so we perform another Step 2 

 
 

Another Step 2 

 Node 5 can be reached from the current node 6 

 Update distance value for node 5 
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   d5 = min{∞, 11+9} = 20 

 Now, node 5 is the only candidate, so its status changes to permanent 

 Node 5 becomes the current node 

 

From node 5 we cannot reach any other node. Hence, node 4 gets permanently labeled and we 

are done. 

 
 

 


