
14

Description of The Algorithm

Dijkstra’s algorithm works by solving the sub-problem k, which computes the shortest path

from the source to vertices among the k closest vertices to the source. For the dijkstra’s

algorithm to work it should be directed- weighted graph and the edges should be non-negative.

If the edges are negative then the actual shortest path cannot be obtained.

General Description

Suppose we want to find a shortest path from a given node s to other nodes in a network (one-to-

all shortest path problem)

 Dijkstra’s algorithm solves such a problem

 It finds the shortest path from a given node s to all other nodes in the network

 Node s is called a starting node or an initial node

 How is the algorithm achieving this?

 Dijkstra’s algorithm starts by assigning some initial values for the distances from node s

and to every other node in the network

 It operates in steps, where at each step the algorithm improves the distance values.

 At each step, the shortest distance from node s to another node is determined

Formal Description

The algorithm characterizes each node by its state.The state of a node consists of two features:

 Distance value and status label

 Distance value of a node is a scalar representing an estimate of the its distance from node s.

 Status label is an attribute specifying whether the distance value of a node is equal to the

shortest distance to node s or not.

 The status label of a node is Permanent if its distance value is equal to the shortest distance

from node s

 Otherwise, the status label of a node is Temporary

The algorithm maintains and step-by-step updates the states of the nodes. At each step one node

is designated as current

Algorithm Steps

Step 1. Initialization

 Assign the zero distance value to node s, and label it as Permanent. [The state of node s is

(0, p)]

 Assign to every node a distance value of ∞ and label them as Temporary. [The state of every

other node is (∞, t)]

 Designate the node s as the current node

Step 2. Distance Value Update and Current Node Designation Update

Let i be the index of the current node.

(1) Find the set J of nodes with temporary labels that can be reached from the current node i

by a link (i, j). Update the distance values of these nodes.

14

 For each j ∈ J, the distance value dj of node j is updated as follows

 new dj = min{dj, di +cij}

where cij is the cost of link (i, j), as given in the network problem.

(2) Determine a node j that has the smallest distance value dj among all nodes j∈ J, find j* such

that

(3) Change the label of node j* to permanent and designate this node as the current node.

Step 3. Termination Criterion

If all nodes that can be reached from node s have been permanently labeled, then stop - we are

done.

If we cannot reach any temporary labeled node from the current node, then all the temporary

labels become permanent - we are done.

Otherwise, go to Step 2.

Dijkstra's Algorithm - Pseudocode

dist[s] ←0 (distance to source vertex is zero)

for all v ∈ V–{s}

 do dist[v] ←∞ (set all other distances to infinity)

S←∅ (S, the set of visited vertices is initially empty)

Q←V (Q, the queue initially contains all vertices)

while Q ≠ ∅ (while the queue is not empty)

do u ← mindistance(Q,dist) (select the element of Q with the min. distance)

 S←S ∪ {u} (add u to list of visited vertices)

 for all v ∈ neighbors[u]

 do if dist[v] > dist[u] + w(u, v) (if new shortest path found)

 then d[v] ←d[u] + w(u, v) (set new value of shortest path)

 (if desired, add traceback code)

return dist

Example: We want to find the shortest path from node 1 to the all the other nodes in the

network using Dijkstra’s algorithm

14

Step 1- Initialization

 Node 1 is designated as the current node

 The state of node 1 is (0, p)

 Every other node has state (∞, t)

Step 2

Nodes 2, 3,and 6 can be reached from the current node 1

 Update distance values for these nodes

d2 = min{∞, 0+7} = 7

d3 = min{∞, 0+9} = 9

d6 = min{∞, 0+14} = 14

11

 Now, among the nodes 2, 3, and 6, node 2 has the smallest distance value

 The status label of node 2 changes to permanent, so its state is (7, p), while the status of 3

and 6 remains temporary

 Node 2 becomes the current node

Step 3

Another Implementation of Step 2

 Nodes 3 and 4 can be reached from the current node 2

 Update distance values for these nodes

 d3 = min{9, 7+10} = 9

 d4 = min{∞, 7+15} = 22

 Now, between the nodes 3 and 4 node 3 has the smallest distance value

 The status label of node 3 changes to permanent, while the status of 4 remains temporary

14

 Node 3 becomes the current node

We are not done (Step 3 fails), so we perform another Step 2

Another Step 2

 Nodes 6 and 4 can be reached from the current node 3

 Update distance values for them

 d4 = min{22, 9+11} = 20

 d6 = min{14, 9+2} = 11

 Now, between the nodes 6 and 4 node 6 has the smallest distance value

 The status label of node 6 changes to permanent, while the status of 4 remains temporary

 Node 6 becomes the current node we are not done (Step 3 fails), so we perform another Step 2

Another Step 2

 Node 5 can be reached from the current node 6

 Update distance value for node 5

14

 d5 = min{∞, 11+9} = 20

 Now, node 5 is the only candidate, so its status changes to permanent

 Node 5 becomes the current node

From node 5 we cannot reach any other node. Hence, node 4 gets permanently labeled and we

are done.

