
14

Description of The Algorithm

Dijkstra’s algorithm works by solving the sub-problem k, which computes the shortest path

from the source to vertices among the k closest vertices to the source. For the dijkstra’s

algorithm to work it should be directed- weighted graph and the edges should be non-negative.

If the edges are negative then the actual shortest path cannot be obtained.

General Description

Suppose we want to find a shortest path from a given node s to other nodes in a network (one-to-

all shortest path problem)

 Dijkstra’s algorithm solves such a problem

 It finds the shortest path from a given node s to all other nodes in the network

 Node s is called a starting node or an initial node

 How is the algorithm achieving this?

 Dijkstra’s algorithm starts by assigning some initial values for the distances from node s

and to every other node in the network

 It operates in steps, where at each step the algorithm improves the distance values.

 At each step, the shortest distance from node s to another node is determined

Formal Description

The algorithm characterizes each node by its state.The state of a node consists of two features:

 Distance value and status label

 Distance value of a node is a scalar representing an estimate of the its distance from node s.

 Status label is an attribute specifying whether the distance value of a node is equal to the

shortest distance to node s or not.

 The status label of a node is Permanent if its distance value is equal to the shortest distance

from node s

 Otherwise, the status label of a node is Temporary

The algorithm maintains and step-by-step updates the states of the nodes. At each step one node

is designated as current

Algorithm Steps

Step 1. Initialization

 Assign the zero distance value to node s, and label it as Permanent. [The state of node s is

(0, p)]

 Assign to every node a distance value of ∞ and label them as Temporary. [The state of every

other node is (∞, t)]

 Designate the node s as the current node

Step 2. Distance Value Update and Current Node Designation Update

Let i be the index of the current node.

(1) Find the set J of nodes with temporary labels that can be reached from the current node i

by a link (i, j). Update the distance values of these nodes.

14

 For each j ∈ J, the distance value dj of node j is updated as follows

 new dj = min{dj, di +cij}

where cij is the cost of link (i, j), as given in the network problem.

(2) Determine a node j that has the smallest distance value dj among all nodes j∈ J, find j* such

that

(3) Change the label of node j* to permanent and designate this node as the current node.

Step 3. Termination Criterion

If all nodes that can be reached from node s have been permanently labeled, then stop - we are

done.

If we cannot reach any temporary labeled node from the current node, then all the temporary

labels become permanent - we are done.

Otherwise, go to Step 2.

Dijkstra's Algorithm - Pseudocode

dist[s] ←0 (distance to source vertex is zero)

for all v ∈ V–{s}

 do dist[v] ←∞ (set all other distances to infinity)

S←∅ (S, the set of visited vertices is initially empty)

Q←V (Q, the queue initially contains all vertices)

while Q ≠ ∅ (while the queue is not empty)

do u ← mindistance(Q,dist) (select the element of Q with the min. distance)

 S←S ∪ {u} (add u to list of visited vertices)

 for all v ∈ neighbors[u]

 do if dist[v] > dist[u] + w(u, v) (if new shortest path found)

 then d[v] ←d[u] + w(u, v) (set new value of shortest path)

 (if desired, add traceback code)

return dist

Example: We want to find the shortest path from node 1 to the all the other nodes in the

network using Dijkstra’s algorithm

14

Step 1- Initialization

 Node 1 is designated as the current node

 The state of node 1 is (0, p)

 Every other node has state (∞, t)

Step 2

Nodes 2, 3,and 6 can be reached from the current node 1

 Update distance values for these nodes

d2 = min{∞, 0+7} = 7

d3 = min{∞, 0+9} = 9

d6 = min{∞, 0+14} = 14

11

 Now, among the nodes 2, 3, and 6, node 2 has the smallest distance value

 The status label of node 2 changes to permanent, so its state is (7, p), while the status of 3

and 6 remains temporary

 Node 2 becomes the current node

Step 3

Another Implementation of Step 2

 Nodes 3 and 4 can be reached from the current node 2

 Update distance values for these nodes

 d3 = min{9, 7+10} = 9

 d4 = min{∞, 7+15} = 22

 Now, between the nodes 3 and 4 node 3 has the smallest distance value

 The status label of node 3 changes to permanent, while the status of 4 remains temporary

14

 Node 3 becomes the current node

We are not done (Step 3 fails), so we perform another Step 2

Another Step 2

 Nodes 6 and 4 can be reached from the current node 3

 Update distance values for them

 d4 = min{22, 9+11} = 20

 d6 = min{14, 9+2} = 11

 Now, between the nodes 6 and 4 node 6 has the smallest distance value

 The status label of node 6 changes to permanent, while the status of 4 remains temporary

 Node 6 becomes the current node we are not done (Step 3 fails), so we perform another Step 2

Another Step 2

 Node 5 can be reached from the current node 6

 Update distance value for node 5

14

 d5 = min{∞, 11+9} = 20

 Now, node 5 is the only candidate, so its status changes to permanent

 Node 5 becomes the current node

From node 5 we cannot reach any other node. Hence, node 4 gets permanently labeled and we

are done.

