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Description of The Algorithm 

 

Dijkstra’s algorithm works by solving the sub-problem  k,  which  computes  the  shortest  path  

from the  source  to vertices among the k closest vertices to the source. For the dijkstra’s 

algorithm to work it should be directed- weighted graph and the edges should be non-negative. 

If the edges are negative then the actual shortest path cannot be obtained. 

 

 

General Description 

Suppose we want to find a shortest path from a given node s to other nodes in a network (one-to-

all shortest path problem) 

 Dijkstra’s algorithm solves such a problem 

 It finds the shortest path from a given node s to all other nodes in the network 

 Node s is called a starting node or an initial node 

 How is the algorithm achieving this? 

 Dijkstra’s algorithm starts by assigning some initial values for the distances from node s 

and to every other node in the network 

 It operates in steps, where at each step the algorithm improves the distance values. 

 At each step, the shortest distance from node s to another node is determined 

 

 

Formal Description 

The algorithm characterizes each node by its state.The state of a node consists of two features: 

 Distance value and status label 

 Distance value of a node is a scalar representing an estimate of the its distance from node s. 

 Status label is an attribute specifying whether the distance value of a node is equal to the 

shortest distance to node s or not. 

 The status label of a node is Permanent if its distance value is equal to the shortest distance 

from node s 

 Otherwise, the status label of a node is Temporary 

The algorithm maintains and step-by-step updates the states of the nodes. At each step one node 

is designated as current 

 

Algorithm Steps 

Step 1. Initialization 

 Assign the zero distance value to node s, and label it as Permanent. [The state of node s is 

(0, p)] 

 Assign to every node a distance value of ∞ and label them as Temporary. [The state of every 

other node is (∞, t)] 

 Designate the node s as the current node 

 

Step 2. Distance Value Update and Current Node Designation Update 

Let i be the index of the current node. 

(1) Find the set J of nodes with temporary labels that can be reached from the current node i 

by a link (i, j). Update the distance values of these nodes. 
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 For each j ∈ J, the distance value dj of node j is updated as follows 

                   new dj = min{dj, di +cij} 

where cij is the cost of link (i, j), as given in the network problem. 

(2) Determine a node j that has the smallest distance value dj among all nodes j∈ J, find j* such 

that   

 
(3) Change the label of node j* to permanent and designate this node as the current node. 

 

 

Step 3. Termination Criterion 

If all nodes that can be reached from node s have been permanently labeled, then stop - we are 

done. 

If we cannot reach any temporary labeled node from the current node, then all the temporary 

labels become permanent - we are done. 

Otherwise, go to Step 2. 

 

 

Dijkstra's Algorithm - Pseudocode 

dist[s] ←0           (distance to source vertex is zero) 

for  all v ∈ V–{s} 

        do  dist[v] ←∞   (set all other distances to infinity)  

S←∅     (S, the set of visited vertices is initially empty)  

Q←V      (Q, the queue initially contains all vertices)                

while Q ≠ ∅    (while the queue is not empty)  

do   u ← mindistance(Q,dist) (select the element of Q with the min. distance)  

      S←S ∪ {u}    (add u to list of visited vertices)  

       for all v ∈  neighbors[u]    

              do  if   dist[v] > dist[u] + w(u, v)   (if new shortest path found) 

                         then      d[v] ←d[u] + w(u, v) (set new value of shortest path) 

  (if desired, add traceback code) 

return dist 

 

 

 

Example: We want to find the shortest path from node 1 to the all the other nodes in the 

network using Dijkstra’s algorithm 
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Step 1- Initialization  

 Node 1 is designated as the current node 

 The state of node 1 is (0, p) 

 Every other node has state (∞, t) 

 
Step 2 

 

Nodes 2, 3,and 6 can be reached from the current node 1 

 Update distance values for these nodes 

 

d2 = min{∞, 0+7} = 7 

d3 = min{∞, 0+9} = 9 

d6 = min{∞, 0+14} = 14 
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 Now, among the nodes 2, 3, and 6, node 2 has the smallest distance value 

 The status label of node 2 changes to permanent, so its state is (7, p), while the status of 3 

and 6 remains temporary 

  Node 2 becomes the current node 

 
Step 3 

Another Implementation of Step 2 

 Nodes 3 and 4 can be reached from the current node 2 

 Update distance values for these nodes 

   d3 = min{9, 7+10} = 9 

   d4 = min{∞, 7+15} = 22 

 

 Now, between the nodes 3 and 4 node 3 has the smallest distance value 

 The status label of node 3 changes to permanent, while the status of 4 remains temporary 
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 Node 3 becomes the current node 

We are not done (Step 3 fails), so we perform another Step 2 

 
Another Step 2 

 Nodes 6 and 4 can be reached from the current node 3 

 Update distance values for them 

   d4 = min{22, 9+11} = 20 

   d6 = min{14, 9+2} = 11 

 

 Now, between the nodes 6 and 4 node 6 has the smallest distance value 

 The status label of node 6 changes to permanent, while the status of 4 remains temporary 

 Node 6 becomes the current node we are not done (Step 3 fails), so we perform another Step 2 

 
 

Another Step 2 

 Node 5 can be reached from the current node 6 

 Update distance value for node 5 
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   d5 = min{∞, 11+9} = 20 

 Now, node 5 is the only candidate, so its status changes to permanent 

 Node 5 becomes the current node 

 

From node 5 we cannot reach any other node. Hence, node 4 gets permanently labeled and we 

are done. 

 
 

 


