
Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 1

 2005 Pearson Education, Inc. All rights reserved.

1

8.8 Composition

• Composition
– A class can have references to objects of other classes as

members

– Sometimes referred to as a has-a relationship

 2005 Pearson Education, Inc. All rights reserved.

2

Software Engineering Observation 8.9

One form of software reuse is composition, in
which a class has as members references to
objects of other classes.

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 2

 2005 Pearson Education,
Inc. All rights reserved.

3

Outline

Date.java

(1 of 3)

 1 // Fig. 8.7: Date.java

 2 // Date class declaration.

 3

 4 public class Date

 5 {

 6 private int month; // 1-12

 7 private int day; // 1-31 based on month

 8 private int year; // any year

 9

10 // constructor: call checkMonth to confirm proper value for month;

11 // call checkDay to confirm proper value for day

12 public Date(int theMonth, int theDay, int theYear)

13 {

14 month = checkMonth(theMonth); // validate month

15 year = theYear; // could validate year

16 day = checkDay(theDay); // validate day

17

18 System.out.printf(

19 "Date object constructor for date %s\n", this);

20 } // end Date constructor
21

 2005 Pearson Education,
Inc. All rights reserved.

4

Outline

Date.java

(2 of 3)

22 // utility method to confirm proper month value

23 private int checkMonth(int testMonth)

24 {

25 if (testMonth > 0 && testMonth <= 12) // validate month

26 return testMonth;

27 else // month is invalid

28 {

29 System.out.printf(

30 "Invalid month (%d) set to 1.", testMonth);

31 return 1; // maintain object in consistent state

32 } // end else

33 } // end method checkMonth

34

35 // utility method to confirm proper day value based on month and year

36 private int checkDay(int testDay)

37 {

38 int daysPerMonth[] =

39 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

40

Validates month value

Validates day value

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 3

 2005 Pearson Education,
Inc. All rights reserved.

5

Outline

Date.java

(3 of 3)

41 // check if day in range for month

42 if (testDay > 0 && testDay <= daysPerMonth[month])

43 return testDay;

44

45 // check for leap year

46 if (month == 2 && testDay == 29 && (year % 400 == 0 ||

47 (year % 4 == 0 && year % 100 != 0)))

48 return testDay;

49

50 System.out.printf("Invalid day (%d) set to 1.", testDay);

51 return 1; // maintain object in consistent state

52 } // end method checkDay

53

54 // return a String of the form month/day/year

55 public String toString()

56 {

57 return String.format("%d/%d/%d", month, day, year);

58 } // end method toString

59 } // end class Date

Check if the day is
February 29 on a
leap year

 2005 Pearson Education,
Inc. All rights reserved.

6

Outline

Employee.java

 1 // Fig. 8.8: Employee.java

 2 // Employee class with references to other objects.

 3

 4 public class Employee

 5 {

 6 private String firstName;

 7 private String lastName;

 8 private Date birthDate;

 9 private Date hireDate;

10

11 // constructor to initialize name, birth date and hire date

12 public Employee(String first, String last, Date dateOfBirth,

13 Date dateOfHire)

14 {

15 firstName = first;

16 lastName = last;

17 birthDate = dateOfBirth;

18 hireDate = dateOfHire;

19 } // end Employee constructor

20

21 // convert Employee to String format

22 public String toString()

23 {

24 return String.format("%s, %s Hired: %s Birthday: %s",

25 lastName, firstName, hireDate, birthDate);

26 } // end method toString

27 } // end class Employee

Employee contains references
to two Date objects

Implicit calls to hireDate and
birthDate’s toString methods

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 4

 2005 Pearson Education,
Inc. All rights reserved.

7

Outline

EmployeeTest.java

 1 // Fig. 8.9: EmployeeTest.java

 2 // Composition demonstration.

 3

 4 public class EmployeeTest

 5 {

 6 public static void main(String args[])

 7 {

 8 Date birth = new Date(7, 24, 1949);

 9 Date hire = new Date(3, 12, 1988);

10 Employee employee = new Employee("Bob", "Blue", birth, hire);

11

12 System.out.println(employee);

13 } // end main

14 } // end class EmployeeTest

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Create an Employee object

Display the Employee object

 2005 Pearson Education, Inc. All rights reserved.

8

8.9 Enumerations

•enum types
– Declared with an enum declaration

• A comma-separated list of enum constants

• Declares an enum class with the following restrictions:

– enum types are implicitly final

– enum constants are implicitly static

– Attempting to create an object of an enum type with
new is a compilation error

– enum constants can be used anywhere constants can

– enum constructor

• Like class constructors, can specify parameters and be
overloaded

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 5

 2005 Pearson Education,
Inc. All rights reserved.

9

Outline

Book.java

(1 of 2)

 1 // Fig. 8.10: Book.java

 2 // Declaring an enum type with constructor and explicit instance fields

 3 // and accessors for these field

 4

 5 public enum Book

 6 {

 7 // declare constants of enum type

 8 JHTP6("Java How to Program 6e", "2005"),

 9 CHTP4("C How to Program 4e", "2004"),

10 IW3HTP3("Internet & World Wide Web How to Program 3e", "2004"),

11 CPPHTP4("C++ How to Program 4e", "2003"),

12 VBHTP2("Visual Basic .NET How to Program 2e", "2002"),

13 CSHARPHTP("C# How to Program", "2002");

14

15 // instance fields

16 private final String title; // book title

17 private final String copyrightYear; // copyright year

18

19 // enum constructor

20 Book(String bookTitle, String year)

21 {

22 title = bookTitle;

23 copyrightYear = year;

24 } // end enum Book constructor

25

Declare six enum constants

Arguments to pass to the
enum constructor

Declare enum constructor Book

Declare instance variables

 2005 Pearson Education,
Inc. All rights reserved.

10

Outline

Book.java

(2 of 2)

26 // accessor for field title

27 public String getTitle()

28 {

29 return title;

30 } // end method getTitle

31

32 // accessor for field copyrightYear

33 public String getCopyrightYear()

34 {

35 return copyrightYear;

36 } // end method getCopyrightYear

37 } // end enum Book

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 6

 2005 Pearson Education, Inc. All rights reserved.

11

8.9 Enumerations (Cont.)

•static method values
– Generated by the compiler for every enum

– Returns an array of the enum’s constants in the order in
which they were declared

•static method range of class EnumSet
– Takes two parameters, the first and last enum constants in

the desired range

– Returns an EnumSet containing the constants in that
range, inclusive

– An enhanced for statement can iterate over an EnumSet
as it can over an array

 2005 Pearson Education,
Inc. All rights reserved.

12

Outline

EnumTest.java

(1 of 2)

 1 // Fig. 8.11: EnumTest.java

 2 // Testing enum type Book.

 3 import java.util.EnumSet;

 4

 5 public class EnumTest

 6 {

 7 public static void main(String args[])

 8 {

 9 System.out.println("All books:\n");

10

11 // print all books in enum Book

12 for (Book book : Book.values())

13 System.out.printf("%-10s%-45s%s\n", book,

14 book.getTitle(), book.getCopyrightYear());

15

16 System.out.println("\nDisplay a range of enum constants:\n");

17

18 // print first four books

19 for (Book book : EnumSet.range(Book.JHTP6, Book.CPPHTP4))

20 System.out.printf("%-10s%-45s%s\n", book,

21 book.getTitle(), book.getCopyrightYear());

22 } // end main

23 } // end class EnumTest

Enhanced for loop iterates for each enum
constant in the array returned by method value

Enhanced for loop iterates for each enum constant
in the EnumSet returned by method range

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 7

 2005 Pearson Education,
Inc. All rights reserved.

13

Outline

EnumTest.java

(2 of 2)

All books:

JHTP6 Java How to Program 6e 2005
CHTP4 C How to Program 4e 2004
IW3HTP3 Internet & World Wide Web How to Program 3e 2004
CPPHTP4 C++ How to Program 4e 2003
VBHTP2 Visual Basic .NET How to Program 2e 2002
CSHARPHTP C# How to Program 2002

Display a range of enum constants:

JHTP6 Java How to Program 6e 2005
CHTP4 C How to Program 4e 2004
IW3HTP3 Internet & World Wide Web How to Program 3e 2004
CPPHTP4 C++ How to Program 4e 2003

 2005 Pearson Education, Inc. All rights reserved.

14

Common Programming Error 8.6

In an enum declaration, it is a syntax error to
declare enum constants after the enum type’s
constructors, fields and methods in the enum
declaration.

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 8

 2005 Pearson Education, Inc. All rights reserved.

15

8.11 static Class Members

•static fields
– Also known as class variables

– Represents class-wide information

– Used when:

• all objects of the class should share the same copy of this
instance variable or

• this instance variable should be accessible even when no
objects of the class exist

– Can be accessed with the class name or an object name and
a dot (.)

– Must be initialized in their declarations, or else the
compiler will initialize it with a default value (0 for ints)

 2005 Pearson Education, Inc. All rights reserved.

16

Software Engineering Observation 8.11

Use a static variable when all objects of a class
must use the same copy of the variable.

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 9

 2005 Pearson Education, Inc. All rights reserved.

17

Software Engineering Observation 8.12

Static class variables and methods exist, and can
be used, even if no objects of that class have been
instantiated.

 2005 Pearson Education,
Inc. All rights reserved.

18

Outline

Employee.java

(1 of 2)

 1 // Fig. 8.12: Employee.java

 2 // Static variable used to maintain a count of the number of

 3 // Employee objects in memory.

 4

 5 public class Employee

 6 {

 7 private String firstName;

 8 private String lastName;

 9 private static int count = 0; // number of objects in memory

10

11 // initialize employee, add 1 to static count and

12 // output String indicating that constructor was called

13 public Employee(String first, String last)

14 {

15 firstName = first;

16 lastName = last;

17

18 count++; // increment static count of employees

19 System.out.printf("Employee constructor: %s %s; count = %d\n",

20 firstName, lastName, count);

21 } // end Employee constructor

22

Declare a static field

Increment static field

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 10

 2005 Pearson Education,
Inc. All rights reserved.

19

Outline

Employee.java

(2 of 2)

23 // subtract 1 from static count when garbage

24 // collector calls finalize to clean up object;

25 // confirm that finalize was called

26 protected void finalize()

27 {

28 count--; // decrement static count of employees

29 System.out.printf("Employee finalizer: %s %s; count = %d\n",

30 firstName, lastName, count);

31 } // end method finalize

32

33 // get first name

34 public String getFirstName()

35 {

36 return firstName;

37 } // end method getFirstName

38

39 // get last name

40 public String getLastName()

41 {

42 return lastName;

43 } // end method getLastName

44

45 // static method to get static count value

46 public static int getCount()

47 {

48 return count;

49 } // end method getCount

50 } // end class Employee

Declare method finalize

Declare static method getCount to
get static field count

 2005 Pearson Education,
Inc. All rights reserved.

20

Outline

EmployeeTest.java

(1 of 3)

 1 // Fig. 8.13: EmployeeTest.java

 2 // Static member demonstration.

 3

 4 public class EmployeeTest

 5 {

 6 public static void main(String args[])

 7 {

 8 // show that count is 0 before creating Employees

 9 System.out.printf("Employees before instantiation: %d\n",

10 Employee.getCount());

11

12 // create two Employees; count should be 2

13 Employee e1 = new Employee("Susan", "Baker");

14 Employee e2 = new Employee("Bob", "Blue");

15

Call static method getCount using class name Employee

Create new Employee objects

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 11

 2005 Pearson Education,
Inc. All rights reserved.

21

Outline

EmployeeTest.java

(2 of 3)

16 // show that count is 2 after creating two Employees

17 System.out.println("\nEmployees after instantiation: ");

18 System.out.printf("via e1.getCount(): %d\n", e1.getCount());

19 System.out.printf("via e2.getCount(): %d\n", e2.getCount());

20 System.out.printf("via Employee.getCount(): %d\n",

21 Employee.getCount());

22

23 // get names of Employees

24 System.out.printf("\nEmployee 1: %s %s\nEmployee 2: %s %s\n\n",

25 e1.getFirstName(), e1.getLastName(),

26 e2.getFirstName(), e2.getLastName());

27

28 // in this example, there is only one reference to each Employee,

29 // so the following two statements cause the JVM to mark each

30 // Employee object for garbage collection

31 e1 = null;

32 e2 = null;

33

34 System.gc(); // ask for garbage collection to occur now

35

Call static method getCount
inside objects

Call static method
getCount outside objects

Remove references to objects, JVM will
mark them for garbage collection

Call static method gc of class System to indicate
that garbage collection should be attempted

 2005 Pearson Education,
Inc. All rights reserved.

22

Outline

EmployeeTest.java

(3 of 3)

36 // show Employee count after calling garbage collector; count

37 // displayed may be 0, 1 or 2 based on whether garbage collector

38 // executes immediately and number of Employee objects collected

39 System.out.printf("\nEmployees after System.gc(): %d\n",

40 Employee.getCount());

41 } // end main

42 } // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; count = 1
Employee constructor: Bob Blue; count = 2

Employees after instantiation:

via e1.getCount(): 2
via e2.getCount(): 2
via Employee.getCount(): 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Employee finalizer: Bob Blue; count = 1
Employee finalizer: Susan Baker; count = 0

Employees after System.gc(): 0

Call static method getCount

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 12

 2005 Pearson Education, Inc. All rights reserved.

23

Good Programming Practice 8.1

Invoke every static method by using the class
name and a dot (.) to emphasize that the method
being called is a static method.

 2005 Pearson Education, Inc. All rights reserved.

24

8.11 static Class Members (Cont.)

•static methods cannot access non-static
class members

– Also cannot use the this reference

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 13

 2005 Pearson Education, Inc. All rights reserved.

25

Common Programming Error 8.7

A compilation error occurs if a static method
calls an instance (non-static) method in the same
class by using only the method name. Similarly, a
compilation error occurs if a static method
attempts to access an instance variable in the
same class by using only the variable name.

 2005 Pearson Education, Inc. All rights reserved.

26

Referring to this in a static method is a
syntax error.

Common Programming Error 8.8

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 14

 2005 Pearson Education, Inc. All rights reserved.

27

8.12 static Import

•static import declarations
– Enables programmers to refer to imported static

members as if they were declared in the class that uses
them

– Single static import

• import static
packageName.ClassName.staticMemberName;

– static import on demand

• import static packageName.ClassName.*;

• Imports all static members of the specified class

 2005 Pearson Education,
Inc. All rights reserved.

28

Outline

StaticImportTest

.java

 1 // Fig. 8.14: StaticImportTest.java

 2 // Using static import to import static methods of class Math.

 3 import static java.lang.Math.*;

 4

 5 public class StaticImportTest

 6 {

 7 public static void main(String args[])

 8 {

 9 System.out.printf("sqrt(900.0) = %.1f\n", sqrt(900.0));

10 System.out.printf("ceil(-9.8) = %.1f\n", ceil(-9.8));

11 System.out.printf("log(E) = %.1f\n", log(E));

12 System.out.printf("cos(0.0) = %.1f\n", cos(0.0));

13 } // end main

14 } // end class StaticImportTest

sqrt(900.0) = 30.0
ceil(-9.8) = -9.0
log(E) = 1.0
cos(0.0) = 1.0

static import on demand

Use Math’s static methods and
instance variable without
preceding them with Math.

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 15

 2005 Pearson Education, Inc. All rights reserved.

29

Common Programming Error 8.9

A compilation error occurs if a program attempts
to import static methods that have the same
signature or static fields that have the same
name from two or more classes.

 2005 Pearson Education, Inc. All rights reserved.

30

8.13 final Instance Variables

• Principle of least privilege
– Code should have only the privilege ad access it needs to

accomplish its task, but no more

•final instance variables
– Keyword final

• Specifies that a variable is not modifiable (is a constant)

– final instance variables can be initialized at their
declaration

• If they are not initialized in their declarations, they must be
initialized in all constructors

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 16

 2005 Pearson Education, Inc. All rights reserved.

31

Declaring an instance variable as final helps
enforce the principle of least privilege. If an
instance variable should not be modified,
declare it to be final to prevent modification.

Software Engineering Observation 8.13

 2005 Pearson Education,
Inc. All rights reserved.

32

Outline

Increment.java

 1 // Fig. 8.15: Increment.java

 2 // final instance variable in a class.

 3

 4 public class Increment

 5 {

 6 private int total = 0; // total of all increments

 7 private final int INCREMENT; // constant variable (uninitialized)

 8

 9 // constructor initializes final instance variable INCREMENT

10 public Increment(int incrementValue)

11 {

12 INCREMENT = incrementValue; // initialize constant variable (once)

13 } // end Increment constructor

14

15 // add INCREMENT to total

16 public void addIncrementToTotal()

17 {

18 total += INCREMENT;

19 } // end method addIncrementToTotal

20

21 // return String representation of an Increment object's data

22 public String toString()

23 {

24 return String.format("total = %d", total);

25 } // end method toIncrementString

26 } // end class Increment

Declare final
instance variable

Initialize final instance variable
inside a constructor

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 17

 2005 Pearson Education,
Inc. All rights reserved.

33

Outline

IncrementTest.java

 1 // Fig. 8.16: IncrementTest.java

 2 // final variable initialized with a constructor argument.

 3

 4 public class IncrementTest

 5 {

 6 public static void main(String args[])

 7 {

 8 Increment value = new Increment(5);

 9

10 System.out.printf("Before incrementing: %s\n\n", value);

11

12 for (int i = 1; i <= 3; i++)

13 {

14 value.addIncrementToTotal();

15 System.out.printf("After increment %d: %s\n", i, value);

16 } // end for

17 } // end main

18 } // end class IncrementTest

Before incrementing: total = 0

After increment 1: total = 5
After increment 2: total = 10
After increment 3: total = 15

Create an Increment object

Call method addIncrementToTotal

 2005 Pearson Education, Inc. All rights reserved.

34

Attempting to modify a final instance
variable after it is initialized is a compilation
error.

Common Programming Error 8.10

Classes and Objects : A Deeper Lock II

Collage of Computer Technology ,
Software Dep. , Object Oriented ,
Second year , First Course , 2011-
2012 18

 2005 Pearson Education, Inc. All rights reserved.

35

A final field should also be declared static if it
is initialized in its declaration. Once a final field
is initialized in its declaration, its value can never
change. Therefore, it is not necessary to have a
separate copy of the field for every object of the
class. Making the field static enables all objects
of the class to share the final field.

Software Engineering Observation 8.14

 2005 Pearson Education, Inc. All rights reserved.

36

Not initializing a final instance variable in
its declaration or in every constructor of the
class yields a compilation error indicating
that the variable might not have been
initialized. The same error occurs if the class
initializes the variable in some, but not all, of
the class’s constructors.

Common Programming Error 8.11

