Object Oriented Methods : Deeper Look Lecture Three

University of Babylon Assistant Lecturer : Wadhah
Collage of Computer R. Baiee

Experience has shown that the best way to develop and maintain a large
program is to construct it from small, simple pieces, or modules. This technique is
called divide and conqguer. Methods, which we introduced in Last lectures, help you
modularize programs. Here , we study methods in more depth. We emphasize how
to declare and use methods to facilitate the design, implementation, operation and
maintenance of large programs.

Methods (called functions or procedures in some languages) help you
modularize a program by separating its tasks into self-contained units. You’ve
declared methods in every program you’ve written. The statements in the method
bodies are written only once, are hidden from other methods and can be reused from
several locations in a program. One motivation for modularizing a program into
methods is the divide-and-conquer approach, which makes program development
more manageable by constructing programs from small, simple pieces. Another is
software reusability sing existing methods as building blocks to create new
programs. Often, you can create programs mostly from standardized methods rather
than by building customized code. For example, in earlier programs, we did not
define how to read data from the keyboard Java provides these capabilities in the
methods of class Scanner. A third motivation is to avoid repeating code. Dividing a
program into meaningful methods makes the program easier to debug and maintain.

Static methods and Math Class:

We use various Math class methods here to present the concept of static
methods. Class Math provides a collection of methods that enable you to perform
common mathematical calculations. For example, you can calculate the square root
of 900.0 with the static method call.

Math.sqgrt(900.0)

Exercise :

Build your own MyMath class with many
common mathematical methods without using
default Java Math class and its methods.

Object Oriented Methods : Deeper Look Lecture Three

Declaring Methods with Multiple Parameters

Methods often require more than one piece of information to perform their tasks.
We now consider how to write your own methods with multiple parameters. Figure
6.3 uses a method called maximum to determine and return the largest of three
double values. In main, lines 14-18 prompt the user to enter three double values,
then read them from the user. Line 21 calls method maximum (declared in lines 28—
41) to determine the largest of the three values it receives as arguments. When
method maximum returns the result to line 21, the program assigns maximum’s
return value to local variable result. Then line 24 outputs the maximum value.

| Fig. 6.3: MaximumFinder.java

2 Programmer-declared method maximum with three double parameters

3 import java.util.Scanner;

4

5 public class MaximumFinder

6 {

7 obtain three floating-point values and locate the maximum value
8 public static void main(String[] args)

9 {

10 create Scanner for input from command window

}] Scanner input = new Scanner(System.in);

12

13 prompt for and input three floating-point values

14 System.out.print(

15 "Enter three floating-point values separated by spaces: ");

Object Oriented Methods : Deeper Look Lecture Three

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

double numberl = input.nextDouble(); read first double

double number2 = input.nextDouble(); // read second double

double number3 = input.nextDouble(); read third double
determine the maximum value

double result = maximum(numberl, number2, number3);

display maximum value
System.out.printin("Maximum is: " + result);
} end main

returns the maximum of its three double parameters
public static double maximum(double x, double y, double z)

{

double maximumValue = x; assume x is the largest to start

/ determine whether y is greater than maximumValue
if (y > maximumValue)
maximumValue = y;

determine whether z is greater than maximumValue
if (z > maximumValue)
maximumValue = z;

return maximumValue;
} // end method maximum
} end class MaximumFinder

Enter three floating-point values separated by spaces: 9.35 2.74 5.1
Maximum is: 9.35

Notes :

Methods can return at most one value, but the returned value could be a
reference to an object that contains many values.

Variables should be declared as fields only if they’re required for use in
more than one method of the class or if the program should save their
values between calls to the class’s methods.

Declaring method parameters of the same type as float x, y instead of float
X, float y is a syntax error a type is required for each parameter in the
parameter list.

Implementing Method maximum by Reusing Method Math.max

The entire body of our maximum method could also be implemented with two
calls to Math .max, as follows:

return Math.max(x, Math.max(y, z));

Object Oriented Methods : Deeper Look Lecture Three
Notes on Declaring and Using Methods
There are three ways to call a method:

1. Using a method name by itself to call another method of the same class
such as maximum(numberl, number2, number3) in line 21 of
Fig. 6.3.

2. Using a variable that contains a reference to an object, followed by a dot
() and the method name to call a non-static method of the referenced
object such as, myGradeBook.displayMessage(), which calls a
method of class GradeBook from the main method of
GradeBookTest.

3. Using the class name and a dot (.) to call a static method of a class such as
Math.sqrt(900.0) .

A static method can call only other static methods of the same class directly
(i.e., using the method name by itself) and can manipulate only static variables in
the same class directly. To access the class’s non-static members, a static method
must use a reference to an object of the class. Recall that static methods relate to a
class as a whole, whereas non-static methods are associated with a specific instance
(object) of the class and may manipulate the instance variables of that object. Many
objects of a class, each with its own copies of the instance variables, may exist at the
same time. Suppose a static method were to invoke a non-static method directly.
How would the method know which object’s instance variables to manipulate?
What would happen if no objects of the class existed at the time the non-static
method was invoked? Thus, Java does not allow a static method to access non-static
members of the same class directly.

Method-Call Stack and Activation Records

To understand how Java performs method calls, we first need to consider a data
structure (i.e., collection of related data items) known as a stack. You can think of a
stack as analogous to a pile of dishes. When a dish is placed on the pile, it’s
normally placed at the top (referred to as pushing the dish onto the stack). Similarly,
when a dish is removed from the pile, it’s always removed from the top (referred to
as popping the dish off the stack). Stacks are known as last-in, first-out (LIFO) data

Object Oriented Methods : Deeper Look Lecture Three

structures—the last item pushed (inserted) on the stack is the first item popped
(removed) from the stack.

When a program calls a method, the called method must know how to return to
its caller, so the return address of the calling method is pushed onto the program-
execution stack (sometimes referred to as the method-call stack). If a series of
method calls occurs, the successive return addresses are pushed onto the stack in
last-in, first-out order so that each method can return to its caller.

The program-execution stack also contains the memory for the local variables
used in each invocation of a method during a program’s execution. This data, stored
as a portion of the program-execution stack, is known as the activation record or
stack frame of the method call. When a method call is made, the activation record
for that method call is pushed onto the program-execution stack. When the method
returns to its caller, the activation record for this method call is popped off the stack
and those local variables are no longer known to the program.

Argument Promotion and Casting

Another important feature of method calls is argument promotion—
converting an argument’s value, if possible, to the type that themethod expects to
receive in its corresponding parameter. For example, a program can call man method
sat With an inrargument even though a double argument is expected. The statement

System.out.printIn(Math.sqrt(4));

correctly evaluates wmatsartay and prints the value 20. Themethod declaration’s
parameter list causes Java to convert the int value 4 to the qoubie Value 4.0 before passing
the value to method sqt. Such conversions may lead to compilation errors if Java’s
promotion rules are not satisfied. These rules specify which conversions are
allowed—that is, which ones can be performed without losing data. In the sqrt
example above, an int is converted to a dounle Without changing its value. However,
converting a double to an int truncates the fractional part of the dounle value—thus, part of
the value is lost. Converting large integer types to small integer types (e.g., iong tO int,
or intt0 short) May also result in changed values.

The promotion rules apply to expressions containing values of two or more
primitive types and to primitive-type values passed as arguments to methods. Each
value is promoted to the “highest” type in the expression. Actually, the expression
uses a temporary copy of each value—the types of the original values remain
unchanged. Figure 6.4 lists the primitive types and the types to which each can be

5

Object Oriented Methods : Deeper Look Lecture Three

promoted. The valid promotions for a given type are always to a type higher in the
table. For example, an intcan be promoted to the higher types iong, fioatand doule.

Converting values to types lower in the table of Fig. 6.4 will result in different
values if the lower type cannot represent the value of the higher type (e.g., the int
value 2000000 cannot be represented as a short, and any floating-point number with
digits after its decimal point cannot be represented in an integer type such as iong, int
Or short).

Therefore, in cases where information may be lost due to conversion, the Java
compiler requires you to use a cast operator (introduced in Section 4.9) to explicitly
force the conversion to occur—otherwise a compilation error occurs. This enables
you to “take control” from the compiler. You essentially say, “I know this
conversion might cause loss of information, but for my purposes here, that’s fine.”
Suppose method square calculates the square of an integer and thus requires an int
argument. To call square with a double argument named doubleValue, we would be
required to write the method call as

square((int) doubleValue)

This method call explicitly casts (converts) a copy of variable doubleValue’s
value to an integer for use in method square. Thus, if doubleValue’s value is 4.5, the
method receives the value 4 and returns 16, not 20.25.

Method Overloading

Methods of the same name can be declared in the same class, as long as they
have different sets of parameters (determined by the number, types and order of the
parameters)—this is called method overloading. When an overloaded method is
called, the compiler selects the appropriate method by examining the number, types
and order of the arguments in the call. Method overloading is commonly used to
create several methods with the same name that perform the same or similar tasks,
but on different types or different numbers of arguments.

Declaring Overloaded Methods

Class MethodOverload (Fig. 6.10) includes two overloaded versions of method
square— one that calculates the square of an it (and returns an in) and one that
calculates the square of a dounie (and returns a dounie). Although these methods have the
same name and similar parameter lists and bodies, think of them simply as different

6

Object Oriented Methods : Deeper Look Lecture Three

methods. It may help to think of the method names as “square of int” and“square of
double,” respectively

1 / Fig. 6.10: MethodOverload.java

2 // Overloaded method declarations.

3

4 public class MethodOverload

5 {

6 / test overloaded square methods

7 public static void main(String[] args)

8 {

9 System.out.printf("Square of integer 7 is %d\n", square(7));
10 System.out.printf("Square of double 7.5 is %f\n", square(7.5));
11 } // end main
12

13 // square method with int argument

14 public static int square(int intValue)

15 {

16 System.out.printf("\nCalled square with int argument: %d\n",
17 intValue);

18 return intValue * intValue;

19 } // end method square with int argument
20
21 // square method with double argument
22 public static double square(double doubleValue)
23 {
24 System.out.printf("\nCalled square with double argument: %f\n",
25 doubleValue);
26 return doubleValue * doubleValue;
27 } // end method square with double argument
28 } // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49

Called square with double argument: 7.500000
Square of double 7.5 is 56.250000

Fig. 6.10 | Overloaded method declarations. (Part 2 of 2.)

The compiler distinguishes overloaded methods by their signature—a
combination of the method’s name and the number, types and order of its
parameters. If the compiler looked only at method names during compilation, the
code in Fig. 6.10 would be ambiguous— the compiler would not know how to
distinguish between the two square methods (lines 14-19 and 22-27). Internally, the
compiler uses longer method names that include the original method name, the types
of each parameter and the exact order of the parameters to determine whether the
methods in a class are unique in that class.

Object Oriented Methods : Deeper Look Lecture Three

In discussing the logical names of methods used by the compiler, we did not
mention the return types of the methods. Method calls cannot be distinguished
by return type. If you had overloaded methods that differed only by their return
types and you called one of the methods in a standalone statement as in:

square(2);

the compiler would nof be able to determine the version of the method to call,
because the return value is ignored. When two methods have the same signature and
different return types, the compiler issues an error message indicating that the
method is already defined in the class. Overloaded methods can have different
return types if the methods have different parameter lists. Also, overloaded methods
need not have the same number of parameters.

