
Object Oriented               Methods : Deeper Look               Lecture Three  

1 
 

 
 
 

Experience has shown that the best way to develop and maintain a large 
program is to construct it from small, simple pieces, or modules. This technique is 
called divide and conquer. Methods, which we introduced in Last lectures, help you 
modularize programs. Here , we study methods in more depth. We emphasize how 
to declare and use methods to facilitate the design, implementation, operation and 
maintenance of large programs. 

Methods (called functions or procedures in some languages) help you 
modularize a program by separating its tasks into self-contained units. You’ve 
declared methods in every program you’ve written. The statements in the method 
bodies are written only once, are hidden from other methods and can be reused from 
several locations in a program. One motivation for modularizing a program into 
methods is the divide-and-conquer approach, which makes program development 
more manageable by constructing programs from small, simple pieces. Another is 
software reusability sing existing methods as building blocks to create new 
programs. Often, you can create programs mostly from standardized methods rather 
than by building customized code. For example, in earlier programs, we did not 
define how to read data from the keyboard Java provides these capabilities in the  
methods of class Scanner. A third motivation is to avoid repeating code. Dividing a 
program into meaningful methods makes the program easier to debug and maintain.  

 

Static methods and Math Class: 
We use various Math class methods here to present the concept of static 

methods. Class Math provides a collection of methods that enable you to perform  
common mathematical calculations. For example, you can calculate the square root 
of 900.0 with the static method call. 

Math.sqrt( 900.0 ) 
 

 

University of Babylon 
Collage of Computer 

Assistant Lecturer : Wadhah 
R. Baiee 

Exercise :  
Build your own MyMath class with many 

common mathematical methods without using 
default Java Math class and its methods.	



Ob

2 
 

Decla
Me

We no
6.3 us
double
then re
41) to 
method
return 

 
 

bject Orien

aring Me
ethods ofte
ow conside
es a meth

e values. I
ead them f

determin
d maximu
value to lo

nted          

ethods w
en require
er how to 
hod called
In main, l
from the u
ne the larg
um return
ocal variab

     Metho

with Mult
e more tha

write you
d maximu
lines 14–1
user. Line 
gest of th

ns the resu
ble result.

ods : Deep

tiple Par
an one piec
ur own me
um to det
18 prompt
21 calls m

he three v
ult to line
. Then line

per Look   

rameters
ce of infor
ethods wit
ermine an
t the user 
method ma
values it r
e 21, the 
e 24 outpu

            Le

s 
rmation to
th multiple
nd return 

to enter t
aximum (d
receives a
program 

uts the max

ecture Thr

o perform 
e paramet
the large
three dou
declared i
as argume
assigns m

aximum va

ree  

their task
ters. Figur
est of thre
uble value
n lines 28

ents. Whe
maximum’
alue. 

s. 
re 
ee 
s, 

8–
en 
’s 

 



Ob

3 
 

 
 

 

Imple
  
Th

calls to

 

bject Orien

Notes 

 Metho
referen

 Variab
more 
values

 Declar
x, floa
param

ementing

he entire b
o Math.m

  r

nted          

: 

ods can re
nce to an 

bles shoul
than one 

s between 

ring meth
at y is a s

meter list. 

g Metho

body of ou
max, as fol
return 

     Metho

eturn at m
object tha

ld be decl
method o
calls to th

od parame
syntax err

d maxim

ur maximu
llows: 
Math.ma

ods : Deep

most one v
at contains

lared as fi
of the cla
he class’s 

eters of th
ror a type

mum by R

um metho

ax( x, 

per Look   

value, but 
s many val

ields only
ss or if th
methods.

he same typ
e is requir

Reusing 

od could a

Math.m

            Le

the return
lues. 

if they’re
he program

pe as float
red for ea

Method

also be im

max( y, 

ecture Thr

ned value 

e required
am should

at x, y inste
ach param

d Math.m

mplemente

z ) );

ree  

could be 

d for use i
d save the

ead of floa
meter in th

max 

d with tw

 

 

a 

in 
ir 

at 
he 

wo 



Object Oriented               Methods : Deeper Look               Lecture Three  

4 
 

Notes on Declaring and Using Methods 
 
There are three ways to call a method: 
 

1. Using a method name by itself to call another method of the same class 
such as maximum(number1, number2, number3) in line 21 of 
Fig. 6.3. 

2. Using a variable that contains a reference to an object, followed by a dot 
(.) and the method name to call a non-static method of the referenced 
object such as, myGradeBook.displayMessage(), which calls a 
method of class GradeBook from the main method of 

GradeBookTest.   
3. Using the class name and a dot (.) to call a static method of a class such as 

Math.sqrt(900.0) .  
 
 
A static method can call only other static methods of the same class directly 

(i.e., using the method name by itself) and can manipulate only static variables in 
the same class directly. To access the class’s non-static members, a static method 
must use a reference to an object of the class. Recall that static methods relate to a 
class as a whole, whereas non-static methods are associated with a specific instance 
(object) of the class and may manipulate the instance variables of that object. Many 
objects of a class, each with its own copies of the instance variables, may exist at the 
same time. Suppose a static method were to invoke a non-static method directly. 
How would the method know which object’s instance variables to manipulate? 
What would happen if no objects of the class existed at the time the non-static 
method was invoked? Thus, Java does not allow a static method to access non-static 
members of the same class directly.  

 

Method-Call Stack and Activation Records 
To understand how Java performs method calls, we first need to consider a data 

structure (i.e., collection of related data items) known as a stack. You can think of a 
stack as analogous to a pile of dishes. When a dish is placed on the pile, it’s 
normally placed at the top (referred to as pushing the dish onto the stack). Similarly, 
when a dish is removed from the pile, it’s always removed from the top (referred to 
as popping the dish off the stack). Stacks are known as last-in, first-out (LIFO) data 



Object Oriented               Methods : Deeper Look               Lecture Three  

5 
 

structures—the last item pushed (inserted) on the stack is the first item popped 
(removed) from the stack. 

 
When a program calls a method, the called method must know how to return to 

its caller, so the return address of the calling method is pushed onto the program-
execution stack (sometimes referred to as the method-call stack). If a series of 
method calls occurs, the successive return addresses are pushed onto the stack in 
last-in, first-out order so that each method can return to its caller. 

The program-execution stack also contains the memory for the local variables 
used in each invocation of a method during a program’s execution. This data, stored 
as a portion of the program-execution stack, is known as the activation record or 
stack frame of the method call. When a method call is made, the activation record 
for that method call is pushed onto the program-execution stack. When the method 
returns to its caller, the activation record for this method call is popped off the stack 
and those local variables are no longer known to the program. 

 

Argument Promotion and Casting 
Another important feature of method calls is argument promotion—

converting an argument’s value, if possible, to the type that themethod expects to 
receive in its corresponding parameter. For example, a program can call Math method 
sqrt with an int argument even though a double argument is expected. The statement 

 
System.out.println( Math.sqrt( 4 ) ); 

  
correctly evaluates Math.sqrt(4) and prints the value 2.0. Themethod declaration’s 

parameter list causes Java to convert the int value 4 to the double value 4.0 before passing 
the value to method sqrt. Such conversions may lead to compilation errors if Java’s 
promotion rules are not satisfied. These rules specify which conversions are 
allowed—that is, which ones can be performed without losing data. In the sqrt 

example above, an int is converted to a double without changing its value. However, 
converting a double to an int truncates the fractional part of the double value—thus, part of 
the value is lost. Converting large integer types to small integer types (e.g., long to int, 
or int to short) may also result in changed values. 

The promotion rules apply to expressions containing values of two or more 
primitive types and to primitive-type values passed as arguments to methods. Each 
value is promoted to the “highest” type in the expression. Actually, the expression 
uses a temporary copy of each value—the types of the original values remain 
unchanged. Figure 6.4 lists the primitive types and the types to which each can be 



Object Oriented               Methods : Deeper Look               Lecture Three  

6 
 

promoted. The valid promotions for a given type are always to a type higher in the 
table. For example, an int can be promoted to the higher types long, float and double. 

Converting values to types lower in the table of Fig. 6.4 will result in different 
values if the lower type cannot represent the value of the higher type (e.g., the int 

value 2000000 cannot be represented as a short, and any floating-point number with 
digits after its decimal point cannot be represented in an integer type such as long, int 

or short).  
Therefore, in cases where information may be lost due to conversion, the Java 

compiler requires you to use a cast operator (introduced in Section 4.9) to explicitly 
force the conversion to occur—otherwise a compilation error occurs. This enables 
you to “take control” from the compiler. You essentially say, “I know this 
conversion might cause loss of information, but for my purposes here, that’s fine.” 
Suppose method square calculates the square of an integer and thus requires an int 
argument. To call square with a double argument named doubleValue, we would be 
required to write the method call as  

 
square( (int) doubleValue ) 

 
This method call explicitly casts (converts) a copy of variable doubleValue’s 

value to an integer for use in method square. Thus, if doubleValue’s value is 4.5, the 
method receives the value 4 and returns 16, not 20.25. 

 
 

Method Overloading 
Methods of the same name can be declared in the same class, as long as they 

have different sets of parameters (determined by the number, types and order of the 
parameters)—this is called method overloading. When an overloaded method is 
called, the compiler selects the appropriate method by examining the number, types 
and order of the arguments in the call. Method overloading is commonly used to 
create several methods with the same name that perform the same or similar tasks, 
but on different types or different numbers of arguments.  

 

Declaring Overloaded Methods 
Class MethodOverload (Fig. 6.10) includes two overloaded versions of method 

square— one that calculates the square of an int (and returns an int) and one that 
calculates the square of a double (and returns a double). Although these methods have the 
same name and similar parameter lists and bodies, think of them simply as different 



Ob

7 
 

method
double

 

 
Th

combin
parame
code in
disting
compil
of each
method

 

bject Orien

ds. It may
e,” respect

he compi
nation of
eters. If th
n Fig. 6.

guish betw
ler uses lo
h paramet
ds in a cla

nted          

y help to th
tively  

iler distin
f the met
he compil
10 would

ween the tw
onger meth
ter and th
ass are uni

     Metho

hink of th

nguishes 
thod’s na
ler looked

be ambi
wo square 
hod names
he exact or
que in tha

ods : Deep

e method 

overload
ame and 
d only at 
guous— 
methods 

s that inclu
rder of th

at class. 

per Look   

names as 

ded meth
the numb
method n
the comp
(lines 14–
ude the or

he parame

            Le

“square o

hods by 
ber, type

names duri
iler would

–19 and 22
riginal met
ters to de

ecture Thr

of int” and

their si
es and or
ring comp
d not kno
2–27). Inte
thod name

etermine w

ree  

d“square o

gnature—
rder of it
ilation, th
ow how t
ernally, th
e, the type

whether th

of 

 

 

—a 
ts 

he 
to 
he 
es 
he 



Object Oriented               Methods : Deeper Look               Lecture Three  

8 
 

In discussing the logical names of methods used by the compiler, we did not 
mention the return types of the methods. Method calls cannot be distinguished 
by return type. If you had overloaded methods that differed only by their return 
types and you called one of the methods in a standalone statement as in: 

 
square( 2 ); 

 
the compiler would not be able to determine the version of the method to call, 

because the return value is ignored. When two methods have the same signature and 
different return types, the compiler issues an error message indicating that the 
method is already defined in the class. Overloaded methods can have different 
return types if the methods have different parameter lists. Also, overloaded methods 
need not have the same number of parameters. 


