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Experience has shown that the best way to develop and maintain a large 
program is to construct it from small, simple pieces, or modules. This technique is 
called divide and conquer. Methods, which we introduced in Last lectures, help you 
modularize programs. Here , we study methods in more depth. We emphasize how 
to declare and use methods to facilitate the design, implementation, operation and 
maintenance of large programs. 

Methods (called functions or procedures in some languages) help you 
modularize a program by separating its tasks into self-contained units. You’ve 
declared methods in every program you’ve written. The statements in the method 
bodies are written only once, are hidden from other methods and can be reused from 
several locations in a program. One motivation for modularizing a program into 
methods is the divide-and-conquer approach, which makes program development 
more manageable by constructing programs from small, simple pieces. Another is 
software reusability sing existing methods as building blocks to create new 
programs. Often, you can create programs mostly from standardized methods rather 
than by building customized code. For example, in earlier programs, we did not 
define how to read data from the keyboard Java provides these capabilities in the  
methods of class Scanner. A third motivation is to avoid repeating code. Dividing a 
program into meaningful methods makes the program easier to debug and maintain.  

 

Static methods and Math Class: 
We use various Math class methods here to present the concept of static 

methods. Class Math provides a collection of methods that enable you to perform  
common mathematical calculations. For example, you can calculate the square root 
of 900.0 with the static method call. 

Math.sqrt( 900.0 ) 
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Exercise :  
Build your own MyMath class with many 

common mathematical methods without using 
default Java Math class and its methods.	
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Notes on Declaring and Using Methods 
 
There are three ways to call a method: 
 

1. Using a method name by itself to call another method of the same class 
such as maximum(number1, number2, number3) in line 21 of 
Fig. 6.3. 

2. Using a variable that contains a reference to an object, followed by a dot 
(.) and the method name to call a non-static method of the referenced 
object such as, myGradeBook.displayMessage(), which calls a 
method of class GradeBook from the main method of 

GradeBookTest.   
3. Using the class name and a dot (.) to call a static method of a class such as 

Math.sqrt(900.0) .  
 
 
A static method can call only other static methods of the same class directly 

(i.e., using the method name by itself) and can manipulate only static variables in 
the same class directly. To access the class’s non-static members, a static method 
must use a reference to an object of the class. Recall that static methods relate to a 
class as a whole, whereas non-static methods are associated with a specific instance 
(object) of the class and may manipulate the instance variables of that object. Many 
objects of a class, each with its own copies of the instance variables, may exist at the 
same time. Suppose a static method were to invoke a non-static method directly. 
How would the method know which object’s instance variables to manipulate? 
What would happen if no objects of the class existed at the time the non-static 
method was invoked? Thus, Java does not allow a static method to access non-static 
members of the same class directly.  

 

Method-Call Stack and Activation Records 
To understand how Java performs method calls, we first need to consider a data 

structure (i.e., collection of related data items) known as a stack. You can think of a 
stack as analogous to a pile of dishes. When a dish is placed on the pile, it’s 
normally placed at the top (referred to as pushing the dish onto the stack). Similarly, 
when a dish is removed from the pile, it’s always removed from the top (referred to 
as popping the dish off the stack). Stacks are known as last-in, first-out (LIFO) data 
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structures—the last item pushed (inserted) on the stack is the first item popped 
(removed) from the stack. 

 
When a program calls a method, the called method must know how to return to 

its caller, so the return address of the calling method is pushed onto the program-
execution stack (sometimes referred to as the method-call stack). If a series of 
method calls occurs, the successive return addresses are pushed onto the stack in 
last-in, first-out order so that each method can return to its caller. 

The program-execution stack also contains the memory for the local variables 
used in each invocation of a method during a program’s execution. This data, stored 
as a portion of the program-execution stack, is known as the activation record or 
stack frame of the method call. When a method call is made, the activation record 
for that method call is pushed onto the program-execution stack. When the method 
returns to its caller, the activation record for this method call is popped off the stack 
and those local variables are no longer known to the program. 

 

Argument Promotion and Casting 
Another important feature of method calls is argument promotion—

converting an argument’s value, if possible, to the type that themethod expects to 
receive in its corresponding parameter. For example, a program can call Math method 
sqrt with an int argument even though a double argument is expected. The statement 

 
System.out.println( Math.sqrt( 4 ) ); 

  
correctly evaluates Math.sqrt(4) and prints the value 2.0. Themethod declaration’s 

parameter list causes Java to convert the int value 4 to the double value 4.0 before passing 
the value to method sqrt. Such conversions may lead to compilation errors if Java’s 
promotion rules are not satisfied. These rules specify which conversions are 
allowed—that is, which ones can be performed without losing data. In the sqrt 

example above, an int is converted to a double without changing its value. However, 
converting a double to an int truncates the fractional part of the double value—thus, part of 
the value is lost. Converting large integer types to small integer types (e.g., long to int, 
or int to short) may also result in changed values. 

The promotion rules apply to expressions containing values of two or more 
primitive types and to primitive-type values passed as arguments to methods. Each 
value is promoted to the “highest” type in the expression. Actually, the expression 
uses a temporary copy of each value—the types of the original values remain 
unchanged. Figure 6.4 lists the primitive types and the types to which each can be 
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promoted. The valid promotions for a given type are always to a type higher in the 
table. For example, an int can be promoted to the higher types long, float and double. 

Converting values to types lower in the table of Fig. 6.4 will result in different 
values if the lower type cannot represent the value of the higher type (e.g., the int 

value 2000000 cannot be represented as a short, and any floating-point number with 
digits after its decimal point cannot be represented in an integer type such as long, int 

or short).  
Therefore, in cases where information may be lost due to conversion, the Java 

compiler requires you to use a cast operator (introduced in Section 4.9) to explicitly 
force the conversion to occur—otherwise a compilation error occurs. This enables 
you to “take control” from the compiler. You essentially say, “I know this 
conversion might cause loss of information, but for my purposes here, that’s fine.” 
Suppose method square calculates the square of an integer and thus requires an int 
argument. To call square with a double argument named doubleValue, we would be 
required to write the method call as  

 
square( (int) doubleValue ) 

 
This method call explicitly casts (converts) a copy of variable doubleValue’s 

value to an integer for use in method square. Thus, if doubleValue’s value is 4.5, the 
method receives the value 4 and returns 16, not 20.25. 

 
 

Method Overloading 
Methods of the same name can be declared in the same class, as long as they 

have different sets of parameters (determined by the number, types and order of the 
parameters)—this is called method overloading. When an overloaded method is 
called, the compiler selects the appropriate method by examining the number, types 
and order of the arguments in the call. Method overloading is commonly used to 
create several methods with the same name that perform the same or similar tasks, 
but on different types or different numbers of arguments.  

 

Declaring Overloaded Methods 
Class MethodOverload (Fig. 6.10) includes two overloaded versions of method 

square— one that calculates the square of an int (and returns an int) and one that 
calculates the square of a double (and returns a double). Although these methods have the 
same name and similar parameter lists and bodies, think of them simply as different 
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In discussing the logical names of methods used by the compiler, we did not 
mention the return types of the methods. Method calls cannot be distinguished 
by return type. If you had overloaded methods that differed only by their return 
types and you called one of the methods in a standalone statement as in: 

 
square( 2 ); 

 
the compiler would not be able to determine the version of the method to call, 

because the return value is ignored. When two methods have the same signature and 
different return types, the compiler issues an error message indicating that the 
method is already defined in the class. Overloaded methods can have different 
return types if the methods have different parameter lists. Also, overloaded methods 
need not have the same number of parameters. 


