
 2014 OOP-LECTURE 3

Assistant Lecturer: Hawraa Shareef 41

:Constructors

 A constructor initializes an object when it is created. It has the same name as its
class and is syntactically similar to a method. However, constructors have no explicit
return type. Typically, you will use a constructor to give initial values to the instance
variables defined by the class, or to perform any other startup procedures required
to create a fully formed object.
All classes have constructors, whether you define one or not, because Java
automatically provides a default constructor that initializes all member variables to
zero. However, once you define your own constructor, the default constructor is no
longer used.
Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass {

 int x;

 MyClass() {

 x = 10;

 }

}

class ConsDemo {

public static void main(String args[]) {

MyClass t1 = new MyClass();

MyClass t2 = new MyClass();

System.out.println(t1.x + " " + t2.x);

}

}

In this example, the constructor for MyClass is

MyClass() {

 x = 10;

}

This constructor assigns the instance variable x of MyClass the value 10. This
constructor is called by new when an object is created. For example, in the line

MyClass t1 = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The
same is true for t2. After construction, t2.x has the value 10. Thus, the output from
the program is

10 10

 2014 OOP-LECTURE 3

Assistant Lecturer: Hawraa Shareef 41

Parameterized Constructors
 In the preceding example, a parameter-less constructor was used. Although this is
fine for some situations, most often you will need a constructor that accepts one or
more parameters.
Parameters are added to a constructor in the same way that they are added to a
method: justndeclare them inside the parentheses after the constructor’s name. For
example, here, MyClass is given a parameterized constructor:
// A parameterized constructor.

class MyClass {

int x;

MyClass(int i) {

x = i;

}

}

class ParmConsDemo {

public static void main(String args[]) {

MyClass t1 = new MyClass(10);

MyClass t2 = new MyClass(88);

System.out.println(t1.x + " " + t2.x);

}

}

The output from this program is shown here:
10 88

In this version of the program, the MyClass() constructor defines one parameter
called i, which is used to initialize the instance variable, x. Thus, when the line
MyClass t1 = new MyClass(10); executes, the value 10 is passed to i, which is
then assigned to x. This constructor has a parameter.

Adding a Constructor to the Vehicle Class

 We can improve the Vehicle class by adding a constructor that automatically
initializes the passengers, fuelcap, and mpg fields when an object is constructed. Pay
special attention to how Vehicle objects are created.
// Add a constructor.

class Vehicle {

int passengers; // number of passengers

int fuelcap; // fuel capacity in gallons

int mpg; // fuel consumption in miles per gallon

// This is a constructor for Vehicle.

Vehicle(int p, int f, int m) {

passengers = p;

fuelcap = f;

mpg = m;

}

// Return the range.

 2014 OOP-LECTURE 3

Assistant Lecturer: Hawraa Shareef 41

int range() {

return mpg * fuelcap;

}

// Compute fuel needed for a given distance.

double fuelneeded(int miles) {

return (double) miles / mpg;

}

}

class VehConsDemo {

public static void main(String args[]) {

// construct complete vehicles

Vehicle minivan = new Vehicle(7, 16, 21);

Vehicle sportscar = new Vehicle(2, 14, 12);

double gallons;

int dist = 252;

gallons = minivan.fuelneeded(dist);

System.out.println("To go " + dist + " miles minivan needs " +

gallons + " gallons of fuel.");
gallons = sportscar.fuelneeded(dist);

System.out.println("To go " + dist + " miles sportscar needs " +

gallons + " gallons of fuel.");

}

}

Both minivan and sportscar are initialized by the Vehicle() constructor when they
are created. Each object is initialized as specified in the parameters to its constructor.
For example, in the following line,

Vehicle minivan = new Vehicle(7, 16, 21);

The values 7, 16, and 21 are passed to the Vehicle() constructor when new creates
the object. Thus, minivan’s copy of passengers, fuelcap, and mpg will contain the
values 7, 16, and 21, respectively. The output from this program is the same as the
previous version.

Controlling Access to Class Members:
 In essence, there are two basic types of class members: public and private. A public
member can be freely accessed by code defined outside of its class. This is the type of
class member that we have been using up to this point.
A private member can be accessed only by other methods defined by its class. It is
through the use of private members that access is controlled.
Restricting access to a class’s members is a fundamental part of object-oriented
programming because it helps prevent the misuse of an object. By allowing access to
private data only through a well-defined set of methods, you can prevent improper
values from being assigned to that data—by performing a range check, for example.
It is not possible for code outside the class to set the value of a private member

 2014 OOP-LECTURE 3

Assistant Lecturer: Hawraa Shareef 41

directly. You can also control precisely how and when the data within an object is
used. Thus, when correctly implemented, a class creates a “black box” that can be
used, but the inner workings of which are not open to tampering.
Up to this point, you haven’t had to worry about access control because Java
provides a default access setting in which the members of a class are freely available
to the other code in your program. (Thus, the default access setting is essentially
public.) Although convenient for simple classes (and example programs in books such
as this one), this default setting is inadequate for many real-world situations. Here
you will see how to use Java’s other access control features.

Java’s Access Specifiers:
 Member access control is achieved through the use of three access specifiers:
public, private, and protected. As explained, if no access specifier is used, the default
access setting is assumed.
When a member of a class is modified by the public specifier, that member can be
accessed by any other code in your program. This includes methods defined inside
other classes.
When a member of a class is specified as private, that member can be accessed only
by other members of its class. Thus, methods in other classes cannot access a private
member of another class.
The default access setting (in which no access specifier is used) is the same as public
unless your program is broken down into packages. A package is, essentially, a
grouping of classes.
An access specifier precedes the rest of a member’s type specification. That is, it
must begin a member’s declaration statement. Here are some examples:

Constructor and Set and Get Methods:
Constructor Used to initialize an object of the class and any members. Called only
once for the lifetime of the object being initialized:

public class Person
{
 String person_name;

 public Person(String name)
 {
 person _name = name;
 }
}

Example usage:

// Initialize object of Person class by calling constructor.
Person p = new Person("John Smith");

 2014 OOP-LECTURE 3

Assistant Lecturer: Hawraa Shareef 41

Get and Set Methods
Used to get or set values of object members respectively. Unlike constructors, set
methods can be used to initialize member values more than once:

public class Person
{
 // Member.
 String person_name;
 // Constructor.
 public Person(String name)
 {
 person_name = name;
 }

 // Get member value.
 public String getName()
 {
 return person_name;
 }

 // Set member value to given value.
 public void setName(String name)
 {
 person_name = name;
 }
}

Example usage:

// Initialize object of Person class.
Person p = new Person("John Smith");
String name;
// Get name of this person.
name = p.getName();
System.out.println(name);

// Set new name for this person.
p.setName("John Doe");
name = p.getName();
System.out.println(name);

Output:

Smith John
John Doe

To understand the effects of public and private, consider the following program:
// Public vs private access.

 2014 OOP-LECTURE 3

Assistant Lecturer: Hawraa Shareef 41

class MyClass {

private int alpha; // private access

public int beta; // public access

int gamma; // default access (essentially public)

/* Methods to access alpha. It is OK for a

member of a class to access a private member of the same class.

*/

void setAlpha(int a) {

alpha = a;

}

int getAlpha() {

return alpha;

}

}

class AccessDemo {

public static void main(String args[]) {

MyClass ob = new MyClass();

/* Access to alpha is allowed only through

its accessor methods. */

ob.setAlpha(-99);

System.out.println("ob.alpha is " + ob.getAlpha());

// You cannot access alpha like this:

// ob.alpha = 10; // Wrong! alpha is private!

// These are OK because beta and gamma are public.

ob.beta = 88;

ob.gamma = 99;

}

}

 As you can see, inside the MyClass class, alpha is specified as private, beta is
explicitly specified as public, and gamma uses the default access, which for this
example is the same as specifying public. Because alpha is private, it cannot be
accessed by code outside of its class.
Therefore, inside the AccessDemo class, alpha cannot be used directly. It must be
accessed through its public accessor methods: setAlpha() and getAlpha(). If you
were to remove the comment symbol from the beginning of the following line,

// ob.alpha = 10; // Wrong! alpha is private!

You would not be able to compile this program because of the access violation.
Although access to alpha by code outside of MyClass is not allowed, methods
defined within MyClass can freely access it, as the setAlpha() and getAlpha()
methods show. The key point is this: a private member can be used freely by other
members of its class, but it cannot be accessed by code outside its class.

