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Converting the Model into Standard Form

The first step in solving a linear programming model manually with the simplex method is
to convert the model into standard form. At the Beaver Creek Pottery Company Native
American artisans produce bowls (x1) and mugs (x2) from labor and clay. The linear pro-
gramming model is formulated as

maximize Z � $40x1 � 50x2 (profit)

subject to

x1 � 2x2 � 40 (labor, hr)
4x1 � 3x2 � 120 (clay, lb)

x1, x2 � 0

We convert this model into standard form by adding slack variables to each constraint
as follows.

maximize Z � 40x1 � 50x2 � 0s1 � 0s2
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T
he simplex method, is a general mathematical solution technique for solving linear
programming problems. In the simplex method, the model is put into the form of a
table, and then a number of mathematical steps are performed on the table. These

mathematical steps in effect replicate the process in graphical analysis of moving from one
extreme point on the solution boundary to another. However, unlike the graphical method,
in which we could simply search through all the solution points to find the best one, the
simplex method moves from one better solution to another until the best one is found, and
then it stops.

The manual solution of a linear programming model using the simplex method can be
a lengthy and tedious process. Years ago, manual application of the simplex method was the
only means for solving a linear programming problem. Now computer solution is certainly
preferred. However, knowledge of the simplex method can greatly enhance one’s under-
standing of linear programming. Computer software programs like QM for Windows or
Excel spreadsheets provide solutions to linear programming problems, but they do not
convey an in-depth understanding of how those solutions are derived. To a certain extent,
graphical analysis provides an understanding of the solution process, and knowledge of the
simplex method further expands on that understanding. In fact, computer solutions are
usually derived using the simplex method. As a result, much of the terminology and nota-
tion used in computer software comes from the simplex method. Thus, for those students
of management science who desire a more in-depth knowledge of linear programming, it is
beneficial to study the simplex solution method as provided here.
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Slack variables are added to �
constraints and represent

unused resources.

subject to

x1 � 2x2 � s1 � 40
4x1 � 3x2 � s2 � 120

x1, x2, s1, s2 � 0

The slack variables, s1 and s2, represent the amount of unused labor and clay, respectively.
For example, if no bowls and mugs are produced, and x1 � 0 and x2 � 0, then the solution
to the problem is

x1 � 2x2 � s1 � 40
0 � 2(0) � s1 � 40

s1 � 40 hr of labor

and

4x1 � 3x2 � s2 � 120
4(0) � 3(0) � s2 � 120

s2 � 120 lb of clay

In other words, when we start the problem and nothing is being produced, all the resources
are unused. Since unused resources contribute nothing to profit, the profit is zero.

Z � $40x1 � 50x2 � 0s1 � 0s2
� 40(0) � 50(0) � 0(40) � 0(120)

Z � $0

It is at this point that we begin to apply the simplex method. The model is in the
required form, with the inequality constraints converted to equations for solution with the
simplex method.

Once both model constraints have been transformed into equations, the equations should
be solved simultaneously to determine the values of the variables at every possible solution
point. However, notice that our example problem has two equations and four unknowns
(i.e., two decision variables and two slack variables), a situation that makes direct simulta-
neous solution impossible. The simplex method alleviates this problem by assigning some
of the variables a value of zero. The number of variables assigned values of zero is n � m,
where n equals the number of variables and m equals the number of constraints (excluding
the nonnegativity constraints). For this model, n � 4 variables and m � 2 constraints;
therefore, two of the variables are assigned a value of zero (i.e., 4 � 2 � 2).

For example, letting x1 � 0 and s1 � 0 results in the following set of equations.

x1 � 2x2 � s1 � 40
4x1 � 3x2 � s2 � 120

and

0 � 2x2 � 0 � 40
0 � 3x2 � s2 � 120

First, solve for x2 in the first equation:

2x2 � 40
x2 � 20

The Solution of 
Simultaneous Equations
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Figure A-1

Solutions at points A, B, and C
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Then, solve for s2 in the second equation:

3x2 � s2 � 120
3(20) � s2 � 120

s2 � 60

This solution corresponds with point A in Figure A-1. The graph in Figure A-1 shows
that at point A, x1 � 0, x2 � 20, s1 � 0, and s2 � 60, the exact solution obtained by solving
simultaneous equations. This solution is referred to as a basic feasible solution. A feasible
solution is any solution that satisfies the constraints. A basic feasible solution satisfies the
constraints and contains as many variables with nonnegative values as there are model con-
straints—that is, m variables with nonnegative values and n � m values set equal to zero.
Typically, the m variables have positive nonzero solution values; however, when one of the
m variables equals zero, the basic feasible solution is said to be degenerate. (The topic of
degeneracy will be discussed at a later point in this module.)

Consider a second example where x2 � 0 and s2 � 0. These values result in the follow-
ing set of equations.

x1 � 2x2 � s1 � 40
4x1 � 3x2 � s2 � 120

and
x1 � 0 � s1 � 40

4x1 � 0 � 0 � 120

Solve for x1:
4x1 � 120

x1 � 30
Then solve for s1:

30 � s1 � 40
s1 � 10

This basic feasible solution corresponds to point C in Figure A-1, where x1 � 30, x2 � 0,
s1 � 10, and s2 � 0.

A basic feasible solution satisfies
the model constraints and has the

same number of variables with
non-negative values as there are

constraints.
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The Simplex Method 

Finally, consider an example where s1 � 0 and s2 � 0. These values result in the follow-
ing set of equations.

x1 � 2x2 � s1 � 40
4x1 � 3x2 � s2 � 120

and

x1 � 2x2 � 0 � 40
4x1 � 3x2 � 0 � 120

These equations can be solved using row operations. In row operations, the equations
can be multiplied by constant values and then added or subtracted from each other with-
out changing the values of the decision variables. First, multiply the top equation by 4 to
get

4x1 � 8x2 � 160

and then subtract the second equation:

4x1 � 8x2 � 160
�4x1 � 3x2 � �120

5x2 � 40
x2 � 8

Next, substitute this value of x2 into either one of the constraints.

x1 � 2(8) � 40
x1 � 24

This solution corresponds to point B on the graph, where x1 � 24, x2 � 8, s1 � 0, and
s2 � 0, which is the optimal solution point.

All three of these example solutions meet our definition of basic feasible solutions.
However, two specific questions are raised by the identification of these solutions.

1. In each example, how was it known which variables to set equal to zero?
2. How is the optimal solution identified?

The answers to both of these questions can be found by using the simplex method. The
simplex method is a set of mathematical steps that determines at each step which variables
should equal zero and when an optimal solution has been reached.

Row operations are used to solve
simultaneous equations where

equations are multiplied by con-
stants and added or subtracted

from each other.

The steps of the simplex method are carried out within the framework of a table, or
tableau. The tableau organizes the model into a form that makes applying the mathemat-
ical steps easier. The Beaver Creek Pottery Company example will be used again to demon-
strate the simplex tableau and method.

maximize Z � $40x1 � 50x2 � 0s1 � 0s2

subject to

x1 � 2x2 � s1 � 40 hr
4x1 � 3x2 � s2 � 120 lb

x1, x2, s1, s2 � 0

The simplex method is a set of
mathematical steps for solving

a linear programming problem
carried out in a table called a

simplex tableau.



The first step in filling in Table A-1 is to record the model variables along the second row
from the top. The two decision variables are listed first, in order of their subscript magni-
tude, followed by the slack variables, also listed in order of their subscript magnitude. This
step produces the row with x1, x2, s1, and s2 in Table A-1.

The next step is to determine a basic feasible solution. In other words, which two vari-
ables will form the basic feasible solution and which will be assigned a value of zero?
Instead of arbitrarily selecting a point (as we did with points A, B, and C in the previous
section), the simplex method selects the origin as the initial basic feasible solution because
the values of the decision variables at the origin are always known in all linear programming
problems. At that point x1 � 0 and x2 � 0; thus, the variables in the basic feasible solution
are s1 and s2.

x1 � 2x2 � s1 � 40
0 � 2(0) � s1 � 40

s1 � 40 hr

and

4x1 � 3x2 � s2 � 120
4(0) � 3(0) � s2 � 120

s2 � 120 lb

In other words, at the origin, where there is no production, all resources are slack, or
unused. The variables s1 and s2, which form the initial basic feasible solution, are listed in
Table A-2 under the column “Basic Variables,” and their respective values, 40 and 120, are
listed under the column “Quantity.”
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Basic
cj Variables Quantity x1 x2 s1 s2

s1 40

s2 120

zj

cj � zj

Table A-2
The Basic Feasible Solution

Basic
cj Variables Quantity x1 x2 s1 s2

zj

cj � zj

Table A-1
The Simplex Tableau

The initial simplex tableau for this model, with the various column and row headings, is
shown in Table A-1.

The basic feasible solution in the
initial simplex tableau is the origin

where all decision variables
equal zero.

At the initial basic feasible solution
at the origin, only slack variables

have a value greater than zero.
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Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 40

0 s2 120

zj

cj � zj

Table A-3
The Simplex Tableau with

cj Values

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 40 1 2 1 0

0 s2 120 4 3 0 1

zj

cj � zj

Table A-4
The Simplex Tableau with

Model Constraint Coefficients

The initial simplex tableau always begins with the solution at the origin, where x1 and x2
equal zero. Thus, the basic variables at the origin are the slack variables, s1 and s2. Since the
quantity values in the initial solution always appear as the right-hand-side values of the
constraint equations, they can be read directly from the original constraint equations.

The top two rows and bottom two rows are standard for all tableaus; however, the num-
ber of middle rows is equivalent to the number of constraints in the model. For example,
this problem has two constraints; therefore, it has two middle rows corresponding to s1 and
s2. (Recall that n variables minus m constraints equals the number of variables in the prob-
lem with values of zero. This also means that the number of basic variables with values
other than zero will be equal to m constraints.)

Similarly, the three columns on the left side of the tableau are standard, and the remain-
ing columns are equivalent to the number of variables. Since there are four variables in
this model, there are four columns on the right of the tableau, corresponding to x1, x2, s1,
and s2.

The next step is to fill in the cj values, which are the objective function coefficients,
representing the contribution to profit (or cost) for each variable xj or sj in the objective
function. Across the top row the cj values 40, 50, 0, and 0 are inserted for each variable
in the model, as shown in Table A-3.

The quantity column values are
the solution values for the vari-

ables in the basic feasible solution.

The number of rows in a tableau is
equal to the number of constraints

plus four.

The number of columns in a
tableau is equal to the number of
variables (including slacks, etc.)

plus three.

The values for cj on the left side of the tableau are the contributions to profit of only
those variables in the basic feasible solution, in this case s1 and s2. These values are inserted
at this location in the tableau so that they can be used later to compute the values in the zj
row.

The columns under each variable (i.e., x1, x2, s1, and s2) are filled in with the coefficients
of the decision variables and slack variables in the model constraint equations. The s1 row
represents the first model constraint; thus, the coefficient for x1 is 1, the coefficient for x2
is 2, the coefficient for s1 is 1, and the coefficient for s2 is 0. The values in the s2 row are the
second constraint equation coefficients, 4, 3, 0, and 1, as shown in Table A-4.

The cj values are the contribution
to profit (or cost) for each

variable.
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Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 40 1 2 1 0

0 s2 120 4 3 0 1

zj 0 0 0 0 0

cj � zj

Table A-5
The Simplex Tableau with zj

Row Values

This completes the process of filling in the initial simplex tableau. The remaining values
in the zj and cj � zj rows, as well as subsequent tableau values, are computed mathemat-
ically using simplex formulas.

The following list summarizes the steps of the simplex method (for a maximization
model) that have been presented so far.

1. First, transform all inequalities to equations by adding slack variables.
2. Develop a simplex tableau with the number of columns equaling the number of

variables plus three, and the number of rows equaling the number of constraints plus
four.

3. Set up table headings that list the model decision variables and slack variables.
4. Insert the initial basic feasible solution, which are the slack variables and their quan-

tity values.
5. Assign cj values for the model variables in the top row and the basic feasible solution

variables on the left side.
6. Insert the model constraint coefficients into the body of the table.

So far the simplex tableau has been set up using values taken directly from the model. From
this point on the values are determined by computation. First, the values in the zj row are
computed by multiplying each cj column value (on the left side) by each column value
under Quantity, x1, x2, s1, and s2 and then summing each of these sets of values. The zj
values are shown in Table A-5.

Computing the zj and 
cj � zj Rows
The zj row values are computed by

multiplying the cj column values
by the variable column values 

and summing.

For example, the value in the zj row under the quantity column is found as follows.

cj Quantity

0 � 40 � 0
0 � 120 � 0

zq � 0

The value in the zj row under the x1 column is found similarly.

cj x1

0 � 1 � 0
0 � 4 � 0

zj � 0

All of the other zj row values for this tableau will be zero when they are computed using this
formula.

Now the cj � zj row is computed by subtracting the zj row values from the cj (top) row
values. For example, in the x1 column the cj � zj row value is computed as 40 � 0 � 40.

The simplex method works by
moving from one solution

(extreme) point to an adjacent
point until it locates the best

solution.
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Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 40 1 2 1 0

0 s2 120 4 3 0 1

zj 0 0 0 0 0

cj � zj 40 50 0 0

Table A-6
The Complete Initial

Simplex Tableau

This value as well as other cj � zj values are shown in Table A-6, which is the complete ini-
tial simplex tableau with all values filled in. This tableau represents the solution at the ori-
gin, where x1 � 0, x2 � 0, s1 � 40, and s2 � 120. The profit represented by this solution
(i.e., the Z value) is given in the zj row under the quantity column—0 in Table A-6. This
solution is obviously not optimal because no profit is being made. Thus, we want to move
to a solution point that will give a better solution. In other words, we want to produce either
some bowls (x1) or some mugs (x2). One of the nonbasic variables (i.e., variables not in the
present basic feasible solution) will enter the solution and become basic.

The Entering Nonbasic
Variable

As an example, suppose the pottery company decides to produce some bowls. With this
decision x1 will become a basic variable. For every unit of x1 (i.e., each bowl) produced,
profit will be increased by $40 because that is the profit contribution of a bowl. How-
ever, when a bowl (x1) is produced, some previously unused resources will be used. For
example, if

x1 � 1

then

x1 � 2x2 � s1 � 40 hr of labor
1 � 2(0) � s1 � 40

s1 � 39 hr of labor

and

4x1 � 3x2 � s2 � 120 lb of clay
4(1) � 3(0) � s2 � 120

s2 � 116 lb of clay

In the labor constraint we see that, with the production of one bowl, the amount of
slack, or unused, labor is decreased by 1 hour. In the clay constraint the amount of slack is
decreased by 4 pounds. Substituting these increases (for x1) and decreases (for slack) into
the objective function gives

cj zj

Z � 40(1) � 50(0) � 0(�1) � 0(�4)
Z � $40

The first part of this objective function relationship represents the values in the cj row;
the second part represents the values in the zj row. The function expresses the fact that to
produce some bowls, we must give up some of the profit already earned from the items
they replace. In this case the production of bowls replaced only slack, so no profit was lost.
In general, the cj � zj row values represent the net increase per unit of entering a nonbasic

The variable with the largest
positive cj � zj value is the

entering variable.



Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 40 1 2 1 0

0 s2 120 4 3 0 1

zj 0 0 0 0 0

cj � zj 40 50 0 0
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Table A-7
Selection of the Entering Basic

Variable

Figure A-2

Selection of which item to
produce — the entering basic

variable
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variable into the basic solution. Naturally, we want to make as much money as possible,
because the objective is to maximize profit. Therefore, we enter the variable that will give
the greatest net increase in profit per unit. From Table A-7, we select variable x2 as the
entering basic variable because it has the greatest net increase in profit per unit, $50 — the
highest positive value in the cj � zj row.

The x2 column, highlighted in Table A-7, is referred to as the pivot column. (The opera-
tions used to solve simultaneous equations are often referred to in mathematical termin-
ology as pivot operations.)

The selection of the entering basic variable is also demonstrated by the graph in
Figure A-2. At the origin nothing is produced. In the simplex method we move from one
solution point to an adjacent point (i.e., one variable in the basic feasible solution is
replaced with a variable that was previously zero). In Figure A-2 we can move along either
the x1 axis or the x2 axis in order to seek a better solution. Because an increase in x2 will
result in a greater profit, we choose x2.

The pivot column is the column
corresponding to the entering

variable.

Since each basic feasible solution contains only two variables with nonzero values, one of
the two basic variables present, s1 or s2, will have to leave the solution and become zero.
Since we have decided to produce mugs (x2), we want to produce as many as possible or, in
other words, as many as our resources will allow. First, in the labor constraint we will use all

The Leaving Basic Variable
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Figure A-3

Determination of the basic
feasible solution point
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the labor to make mugs (because no bowls are to be produced, x1 � 0; and because we will
use all the labor possible and s1 � unused labor resources, s1 � 0 also).

1x1 � 2x2 � s1 � 40 hr
1(0) � 2x2 � 0 � 40

x2 �

� 20 mugs

In other words, enough labor is available to produce 20 mugs. Next, perform the same
analysis on the constraint for clay.

4x1 � 3x2 � s2 � 120 lb
4(0) � 3x2 � 0 � 120

x2 �

� 40 mugs

This indicates that there is enough clay to produce 40 mugs. But there is enough labor to pro-
duce only 20 mugs. We are limited to the production of only 20 mugs because we do not have
enough labor to produce any more than that. This analysis is shown graphically in Figure A-3.

120 lb

3 lb/mug

40 hr

2 hr/mug

Because we are moving out the x2 axis, we can move from the origin to either point A or
point R. We select point A because it is the most constrained and thus feasible, whereas point
R is infeasible.

This analysis is performed in the simplex method by dividing the quantity values of the
basic solution variables by the pivot column values. For this tableau,

Basic
Variables Quantity x2

s1 40 ÷ 2 � 20, the leaving basic variable
s2 120 ÷ 3 � 40

The leaving variable is determined
by dividing the quantity values by

the pivot column values and
selecting the minimum possible

value or zero.
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Table A-8
Pivot Column, Pivot Row, and

Pivot Number

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

50 x2

0 s2

zj

cj � zj

Table A-9
The Basic Variables and cj

Values for the Second
Simplex Tableau

The leaving basic variable is the variable that corresponds to the minimum nonneg-
ative quotient, which in this case is 20. (Note that a value of zero would qualify as
the minimum quotient and would be the choice for the leaving variable.) Therefore, s1
is the leaving variable. (At point A in Figure A-3, s1 equals zero because all the labor is
used to make the 20 mugs.) The s1 row, highlighted in Table A-8, is also referred to as the
pivot row.

The value of 2 at the intersection of the pivot row and the pivot column is called the
pivot number. The pivot number, row, and column are all instrumental in developing the
next tableau. We are now ready to proceed to the second simplex tableau and a better
solution.

Table A-9 shows the second simplex tableau with the new basic feasible solution variables
of x2 and s2 and their corresponding cj values.

The pivot row is the row
corresponding to the leaving

variable.

The pivot number is the number
at the intersection of the pivot

column and row.

Developing a New Tableau

Computing the new tableau pivot
row values.

The various row values in the second tableau are computed using several simplex for-
mulas. First, the x2 row, called the new tableau pivot row, is computed by dividing every
value in the pivot row of the first (old) tableau by the pivot number. The formula for these
computations is

new tableau pivot row values �

The new row values are shown in Table A-10.
To compute all remaining row values (in this case there is only one other row), another

formula is used.

old tableau pivot row values

pivot number

Computing all remaining row
values.

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 40 1 2 1 0

0 s2 120 4 3 0 1

zj 0 0 0 0 0

cj � zj 40 50 0 0
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Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

50 x2 20 1/2 1 1/2 0

0 s2

zj

cj � zj

Table A-10
Computation of the New Pivot

Row Values

Quantity 120 � (3 � 20) � 60

x1 4 � (3 � 1/2) � 5/2

x2 3 � (3 � 1) � 0

s1 0 � (3 � 1/2) � �3/2

s2 1 � (3 � 0) � 1

Column

    Old Tableau

Row Value

  �  �Corresponding

Coefficients in

Pivot Column

  �  

New Tableau

Pivot

Row Value �  �  New Tableau

Row Value

Table A-11
Computation of New s2

Row Values

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

50 x2 20 1/2 1 1/2 0

0 s2 60 5/2 0 �3/2 1

zj

cj � zj

Table A-12
The Second Simplex Tableau

with Row Values

Thus, this formula requires the use of both the old tableau and the new one. The s2 row
values are computed in Table A-11.

new tableau
row values �

old tableau
row values � �corresponding

coefficients in
pivot column

�
corresponding

new tableau
pivot row value�

These values have been inserted in the simplex tableau in Table A-12.
This solution corresponds to point A in the graph of this model in Figure A-3. The solu-

tion at this point is x1 � 0, x2 � 20, s1 � 0, s2 � 60. In other words, 20 mugs are produced
and 60 pounds of clay are left unused. No bowls are produced and no labor hours remain
unused.

The second simplex tableau is completed by computing the zj and cj � zj row values the
same way they were computed in the first tableau. The zj row is computed by summing the
products of the cj column and all other column values.
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After developing the simplex method for solving linear pro-
gramming problems, George Dantzig needed a good problem
to test it on. The problem he selected was the “diet problem”
formulated in 1945 by Nobel economist George Stigler. This
problem was to determine an adequate nutritional diet at min-
imum cost (which was an important military and civilian issue
during World War II). Formulated as a linear programming

model, the diet problem consisted of 77 unknowns and 9 equa-
tions. It took 9 clerks using hand-operated (mechanical) desk
calculators 120 man-days to obtain the optimal simplex solu-
tion: a diet consisting primarily of wheat flour, cabbage, and
dried navy beans that cost $39.69 per year (in 1939 prices). The
solution developed by Stigler using his own numerical method
was only 24 cents more than the optimal solution.

for George B. DantzigTime Out

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

50 x2 20 1/2 1 1/2 0

0 s2 60 5/2 0 �3/2 1

zj 1,000 25 50 25 0

cj � zj 15 0 �25 0

Table A-13
The Completed Second

Simplex Tableau

Column

Quantity zj � (50) (20) � (0) (60) � 1000
x1 z1 � (50) (1/2) � (0) (5/2) � 25
x2 z2 � (50) (1) � (0) (0) � 50
s1 z3 � (50) (1/2) � (0) (�3/2) � 25
s2 z4 � (50) (0) � (0) (1) � 0

The zj row values and the cj � zj row values are added to the tableau to give the com-
pleted second simplex tableau shown in Table A-13. The value of 1,000 in the zj row is the
value of the objective function (profit) for this basic feasible solution.

Each tableau is the same as per-
forming row operations for a set of

simultaneous equations.

The computational steps that we followed to derive the second tableau in effect accom-
plish the same thing as row operations in the solution of simultaneous equations. These
same steps are used to derive each subsequent tableau, called iterations.

The steps that we followed to derive the second simplex tableau are repeated to develop the
third tableau. First, the pivot column or entering basic variable is determined. Because 
15 in the cj � zj row represents the greatest positive net increase in profit, x1 becomes the
entering nonbasic variable. Dividing the pivot column values into the values in the quantity
column indicates that s2 is the leaving basic variable and corresponds to the pivot row. The
pivot row, pivot column, and pivot number are indicated in Table A-14.

At this point you might be wondering why the net increase in profit per bowl (x1) is $15
rather than the original profit of $40. It is because the production of bowls (x1) will require
some of the resources previously used to produce mugs (x2) only. Producing some bowls
means not producing as many mugs; thus, we are giving up some of the profit gained from
producing mugs to gain even more by producing bowls. This difference is the net increase
of $15.

The Optimal Simplex
Tableau
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Table A-14
The Pivot Row, Pivot Column,

and Pivot Number

Quantity 20 � (1/2 � 24) � 8

x1 1/2 � (1/2 � 1) � 0

x2 1 � (1/2 � 0) � 1

s1 1/2 � (1/2 � �3/5) � 4/5

s2 0 � (1/2 � 2/5) � �1/5

Column

    Old Tableau

Row Value

  �  �Corresponding

Coefficients in

Pivot Column

   �  

New Tableau

Pivot

Row Value �  �  New Tableau

Row Value

Table A-15
Computation of the x2 Row for

the Third Simplex Tableau

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

50 x2 8 0 1 4/5 �1/5

40 x1 24 1 0 �3/5 2/5

zj 1,360 40 50 16 6

cj � zj 0 0 �16 �6

Table A-16
The Completed Third Simplex

Tableau

The new tableau pivot row (x1) in the third simplex tableau is computed using the same
formula used previously. Thus, all old pivot row values are divided through by 5/2, the
pivot number. These values are shown in Table A-16. The values for the other row (x2) are
computed as shown in Table A-15.

These new row values, as well as the new zj row and cj � zj row, are shown in the com-
pleted third simplex tableau in Table A-16.

Observing the cj � zj row to determine the entering variable, we see that a nonbasic vari-
able would not result in a positive net increase in profit, as all values in the cj � zj row are
zero or negative. This means that the optimal solution has been reached. The solution is

x1 � 24 bowls
x2 � 8 mugs
Z � $1,360 profit

The solution is optimal when all
cj � zj values � 0.

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

50 x2 20 1/2 1 1/2 0

0 s2 60 5/2 0 �3/2 1

zj 1,000 25 50 25 0

cj � zj 15 0 �25 0
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Simplex Solution of a Minimization Problem

Summary of the Simplex Method

which corresponds to point B in Figure A-1.
An additional comment should be made regarding simplex solutions in general.

Although this solution resulted in integer values for the variables (i.e., 24 and 8), it is pos-
sible to get a fractional solution for decision variables even though the variables reflect
items that should be integers, such as airplanes, television sets, bowls, and mugs. To apply
the simplex method, one must accept this limitation.

The simplex method demonstrated in the previous section consists of the following steps.

1. Transform the model constraint inequalities into equations.
2. Set up the initial tableau for the basic feasible solution at the origin and compute 

the zj and cj � zj row values.
3. Determine the pivot column (entering nonbasic solution variable) by selecting the

column with the highest positive value in the cj � zj row.
4. Determine the pivot row (leaving basic solution variable) by dividing the quantity

column values by the pivot column values and selecting the row with the minimum
nonnegative quotient.

5. Compute the new pivot row values using the formula

6. Compute all other row values using the formula

7. Compute the new zj and cj � zj rows.
8. Determine whether or not the new solution is optimal by checking the cj � zj row. If

all cj � zj row values are zero or negative, the solution is optimal. If a positive value
exists, return to step 3 and repeat the simplex steps.

new tableau
row values

�
old tableau
row values

� �corresponding
coefficients in
pivot Column

�

corresponding
new tableau

pivot row values�

new tableau pivot row values �
old tableau pivot row values

pivot number

In the previous section the simplex method for solving linear programming problems was
demonstrated for a maximization problem. In general, the steps of the simplex method
outlined at the end of this section are used for any type of linear programming problem.
However, a minimization problem requires a few changes in the normal simplex process,
which we will discuss in this section.

In addition, several exceptions to the typical linear programming problem will be pre-
sented later in this module. These include problems with mixed constraints (�, �, and �);
problems with more than one optimal solution, no feasible solution, or an unbounded
solution; problems with a tie for the pivot column; problems with a tie for the pivot row;
and problems with constraints with negative quantity values. None of these kinds of
problems require changes in the simplex method. They are basically unusual results in
individual simplex tableaus that the reader should know how to interpret and work with.

The simplex method does not
guarantee integer solutions.
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Figure A-4

Graph of the fertilizer example
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Consider the following linear programming model for a farmer purchasing fertilizer.

minimize Z � $6x1 � 3x2

subject to

2x1 � 4x2 � 16 lb of nitrogen
4x1 � 3x2 � 24 lb of phosphate

where

x1 � bags of Super-gro fertilizer
x2 � bags of Crop-quick fertilizer
Z � farmer’s total cost ($) of purchasing fertilizer

This model is transformed into standard form by subtracting surplus variables from the
two � constraints as follows.

minimize Z � 6x1 � 3x2 � 0s1 � 0s2

subject to

2x1 � 4x2 � s1 � 16
4x1 � 3x2 � s1 � 24

x1, x2, s1, s2 � 0

The surplus variables represent the extra amount of nitrogen and phosphate that exceeded
the minimum requirements specified in the constraints.

However, the simplex method requires that the initial basic feasible solution be at the
origin, where x1 � 0 and x2 � 0. Testing these solution values, we have

2x1 � 4x2 � s1 � 16
2(0) � 4(0) � s1 � 16

s1 � �16

The idea of “negative excess pounds of nitrogen” is illogical and violates the nonnegativ-
ity restriction of linear programming. The reason the surplus variable does not work is
shown in Figure A-4. The solution at the origin is outside the feasible solution space.

Transforming a model into
standard form by subtracting

surplus variables will not work
in the simplex method.



To alleviate this difficulty and get a solution at the origin, we add an artificial variable
(A1) to the constraint equation,

2x1 � 4x2 � s1 � A1 � 16

The artificial variable, A1, does not have a meaning as a slack variable or a surplus variable
does. It is inserted into the equation simply to give a positive solution at the origin; we are
artificially creating a solution.

2x1 � 4x2 � s1 � A1 � 16
2(0) � 4(0) � 0 � A1 � 16

A1 � 16

The artificial variable is somewhat analogous to a booster rocket — its purpose is to get
us off the ground; but once we get started, it has no real use and thus is discarded. The arti-
ficial solution helps get the simplex process started, but we do not want it to end up in the
optimal solution, because it has no real meaning.

When a surplus variable is subtracted and an artificial variable is added, the phosphate
constraint becomes

4x1 � 3x2 � s2 � A2 � 24

The effect of surplus and artificial variables on the objective function must now be con-
sidered. Like a slack variable, a surplus variable has no effect on the objective function in
terms of increasing or decreasing cost. For example, a surplus of 24 pounds of nitrogen
does not contribute to the cost of the objective function, because the cost is determined
solely by the number of bags of fertilizer purchased (i.e., the values of x1 and x2). Thus, a
coefficient of 0 is assigned to each surplus variable in the objective function.

By assigning a “cost” of $0 to each surplus variable, we are not prohibiting it from being
in the final optimal solution. It would be quite realistic to have a final solution that showed
some surplus nitrogen or phosphate. Likewise, assigning a cost of $0 to an artificial variable
in the objective function would not prohibit it from being in the final optimal solution.
However, if the artificial variable appeared in the solution, it would render the final solu-
tion meaningless. Therefore, we must ensure that an artificial variable is not in the final
solution.

As previously noted, the presence of a particular variable in the final solution is based on
its relative profit or cost. For example, if a bag of Super-gro costs $600 instead of $6 and
Crop-quick stayed at $3, it is doubtful that the farmer would purchase Super-gro (i.e., x1
would not be in the solution). Thus, we can prohibit a variable from being in the final solu-
tion by assigning it a very large cost. Rather than assigning a dollar cost to an artificial vari-
able, we will assign a value of M, which represents a large positive cost (say, $1,000,000). This
operation produces the following objective function for our example:

minimize Z � 6x1 � 3x2 � 0s1 � 0s2 � MA1 � MA2

The completely transformed minimization model can now be summarized as

minimize Z � 6x1 � 3x2 � 0s1 � 0s2 � MA1 � MA2

subject to

2x1 � 4x1 � s1 � A1 � 16
4x1 � 3x2 � s2 � A2 � 24

x1, x2, s1, s2, A1, A2 � 0

A-18 Module A The Simplex Solution Method

An artificial variable allows for
an initial basic feasible solution at

the origin, but it has no real
meaning.

Artificial variables are assigned a
large cost in the objective function

to eliminate them from the final
solution.
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Table A-17
The Initial Simplex Tableau

Table A-18
The Second Simplex Tableau

The initial simplex tableau for a minimization model is developed the same way as one for
a maximization model, except for one small difference. Rather than computing cj � zj in
the bottom row of the tableau, we compute zj � cj, which represents the net per unit
decrease in cost, and the largest positive value is selected as the entering variable and pivot
column. (An alternative would be to leave the bottom row as cj � zj and select the largest
negative value as the pivot column. However, to maintain a consistent rule for selecting 
the pivot column, we will use zj � cj.)

The initial simplex tableau for this model is shown in Table A-17. Notice that A1 and
A2 form the initial solution at the origin, because that was the reason for inserting
them in the first place — to get a solution at the origin. This is not a basic feasible
solution, since the origin is not in the feasible solution area, as shown in Figure A-4.
As indicated previously, it is an artificially created solution. However, the simplex
process will move toward feasibility in subsequent tableaus. Note that across the top
the decision variables are listed first, then surplus variables, and finally artificial
variables.

In Table A-17 the x2 column was selected as the pivot column because 7M � 3 is 
the largest positive value in the zj � cj row. A1 was selected as the leaving basic variable (and
pivot row) because the quotient of 4 for this row was the minimum positive row value.

The second simplex tableau is developed using the simplex formulas presented
earlier. It is shown in Table A-18. Notice that the A1 column has been eliminated in the
second simplex tableau. Once an artificial variable leaves the basic feasible solution,
it will never return because of its high cost, M. Thus, like the booster rocket, it can be
eliminated from the tableau. However, artificial variables are the only variables that can
be treated this way.

The Simplex Tableau for 
a Minimization Problem

The cj � zj row is changed to
zj � cj in the simplex tableau for

a minimization problem.

Artificial variables are always
included as part of the initial basic

feasible solution when they exist.

The third simplex tableau, with x1 replacing A2, is shown in Table A-19. Both the A1 and
A2 columns have been eliminated because both variables have left the solution. The x1 row

Once an artificial variable is
selected as the leaving variable, it

will never reenter the tableau, so it
can be eliminated.

Basic
6 3 0 0 M M

cj Variables Quantity x1 x2 s1 s2 A1 A2

M A1 16 2 4 �1 0 1 0

M A2 24 4 3 0 �1 0 1

zj 40M 6M 7M �M �M M M

zj � cj 6M � 6 7M � 3 �M �M 0 0

Basic
6 3 0 0 M

cj Variables Quantity x1 x2 s1 s2 A1

3 x2 4 1/2 1 �1/4 0 0

M A2 12 5/2 0 3/4 �1 1

zj 12M � 12 5M/2 � 3/2 3 �3/4 � 3/M4 �M M

zj � cj 5M/2 � 9/2 0 �3/4 � 3/M4 �M 0
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Basic
6 3 0 0

cj Variables Quantity x1 x2 s1 s2

3 x2 8 4/3 1 0 �1/3

0 s1 16 10/3 0 1 �4/3

zj 24 4 3 0 �1

zj � cj �2 0 0 �1

Table A-20
Optimal Simplex Tableau

Table A-19
The Third Simplex Tableau

is selected as the pivot row because it corresponds to the minimum positive ratio of 16. In
selecting the pivot row, the �4 value for the x2 row was not considered because the mini-
mum positive value or zero is selected. Selecting the x2 row would result in a negative quan-
tity value for s1 in the fourth tableau, which is not feasible.

The fourth simplex tableau, with s1 replacing x1, is shown in Table A-20. Table A-20 is
the optimal simplex tableau because the zj � cj row contains no positive values. The opti-
mal solution is

x1 � 0 bags of Super-gro
s1 � 16 extra lb of nitrogen
x2 � 8 bags of Crop-quick
s2 � 0 extra lb of phosphate
Z � $24, total cost of purchasing fertilizer

To summarize, the adjustments necessary to apply the simplex method to a minimization
problem are as follows:

1. Transform all � constraints to equations by subtracting a surplus variable and adding
an artificial variable.

2. Assign a cj value of M to each artificial variable in the objective function.
3. Change the cj � zj row to zj � cj.

Although the fertilizer example model we just used included only � constraints, it is
possible for a minimization problem to have � and � constraints in addition to � con-
straints. Similarly, it is possible for a maximization problem to have � and � constraints
in addition to � constraints. Problems that contain a combination of different types of
inequality constraints are referred to as mixed constraint problems.

Simplex Adjustments for
a Minimization Problem

Basic
6 3 0 0

cj Variables Quantity x1 x2 s1 s2

3 x2 8/5 0 1 �2/5 1/5

6 x1 24/5 1 0 3/10 �2/5

zj 168/5 6 3 3/5 �9/5

zj � cj 0 0 3/5 �9/5
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A Mixed Constraint Problem

A mixed constraint problem
includes a combination of �, �,

and � constraints.

So far we have discussed maximization problems with all � constraints and minimization
problems with all � constraints. However, we have yet to solve a problem with a mix-
ture of �, �, and � constraints. Furthermore, we have not yet looked at a maximization
problem with a � constraint. The following is a maximization problem with �, �, and
� constraints.

A leather shop makes custom-designed, hand-tooled briefcases and luggage. The shop
makes a $400 profit from each briefcase and a $200 profit from each piece of luggage. (The
profit for briefcases is higher because briefcases require more hand tooling.) The shop has
a contract to provide a store with exactly 30 items per month. A tannery supplies the shop
with at least 80 square yards of leather per month. The shop must use at least this amount
but can order more. Each briefcase requires 2 square yards of leather; each piece of luggage
requires 8 square yards of leather. From past performance, the shop owners know they can-
not make more than 20 briefcases per month. They want to know the number of briefcases
and pieces of luggage to produce in order to maximize profit.

This problem is formulated as

maximize Z � $400x1 � 200x2

subject to

x1 � x2 � 30 contracted items
2x1 � 8x2 � 80 yd2 of leather

x1 � 20 briefcases
x1, x2 � 0

where x1 � briefcases and x2 � pieces of luggage.
The first step in the simplex method is to transform the inequalities into equations. The

first constraint for the contracted items is already an equation; therefore, it is not necessary
to add a slack variable. There can be no slack in the contract with the store because exactly
30 items must be delivered. Even though this equation already appears to be in the neces-
sary form for simplex solution, let us test it at the origin to see if it meets the starting
requirements.

x1 � x2 � 30
0 � 0 � 30

0 � 30

Because zero does not equal 30, the constraint is not feasible in this form. Recall that a �
constraint did not work at the origin either in an earlier problem. Therefore, an artificial
variable was added. The same thing can be done here.

x1 � x2 � A1 � 30

Now at the origin, where x1 � 0 and x2 � 0,

0 � 0 � A1 � 30
A1 � 30

Any time a constraint is initially an equation, an artificial variable is added. However, the
artificial variable cannot be assigned a value of M in the objective function of a maximiza-
tion problem. Because the objective is to maximize profit, a positive M value would repre-
sent a large positive profit that would definitely end up in the final solution. Because an arti-
ficial variable has no real meaning and is inserted into the model merely to create an initial

An artificial variable is added to
an equality (�) constraint for

standard form.
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Table A-21
The Initial Simplex Tableau

Table A-22
The Second Simplex Tableau

solution at the origin, its existence in the final solution would render the solution mean-
ingless. To prevent this from happening, we must give the artificial variable a large cost con-
tribution, or �M.

The constraint for leather is a � inequality. It is converted to equation form by subtract-
ing a surplus variable and adding an artificial variable:

2x1 � 8x2 � s1 � A2 � 80

As in the equality constraint, the artificial variable in this constraint must be assigned an
objective function coefficient of �M.

The final constraint is a � inequality and is transformed by adding a slack variable:

x1 � s2 � 20

The completely transformed linear programming problem is as follows:

maximize Z � 400x1 � 200x2 � 0s1 � 0s2 � MA1 � MA2

subject to

x1 � x2 � A1 � 30
2x1 � 8x2 � s1 � A2 � 80

x1 � s2 � 20
x1, x2, s1, s2, A1, A2 � 0

The initial simplex tableau for this model is shown in Table A-21. Notice that the basic
solution variables are a mix of artificial and slack variables. Note also that the third-row
quotient for determining the pivot row (20 � 0) is an undefined value, or . Therefore, this
row would never be considered as a candidate for the pivot row. The second, third, and
optimal tableaus for this problem are shown in Tables A-22, A-23, and A-24.

	

An artificial variable in a
maximization problem is given

a large cost contribution to drive
it out of the problem.

Basic
400 200 0 0 �M

cj Variables Quantity x1 x2 s1 s2 A1

�M A1 20 3/4 0 1/8 0 1

200 x2 10 1/4 1 �1/8 0 0

0 s2 20 1 0 0 1 0

zj 2,000 � 20M 50 � 3M/4 200 �25 � M/8 0 �M

cj � zj 350 � 3M/4 0 25 � M/8 0 0

Basic
400 200 0 0 �M �M

cj Variables Quantity x1 x2 s1 s2 A1 A2

�M A1 30 1 1 0 0 1 0

�M A2 80 2 8 �1 0 0 1

0 s2 20 1 0 0 1 0 0

zj �110M �3M �9M M 0 �M �M

cj � zj 400 � 3M 200 � 9M �M 0 0 0
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Table A-23
The Third Simplex Tableau

Basic
400 500 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 40 0 0 1 �6

200 x2 10 0 1 0 �1

400 x1 20 1 0 0 1

zj 10,000 400 200 0 200

cj � zj 0 0 0 �200

Table A-24
The Optimal Simplex Tableau

Irregular Types of Linear Programming Problems 

The solution for the leather shop problem is (see Table A-24):

x1 � 20 briefcases
x2 � 10 pieces of luggage
s1 � 40 extra yd2 of leather
Z � $10,000 profit per month

It is now possible to summarize a set of rules for transforming all three types of model
constraints.

Objective Function Coefficient

Constraint Adjustment Maximization Minimization

� Add a slack variable 0 0

� Add an artificial variable �M M

� Subtract a surplus variable 0 0

and add an artificial variable �M M

The basic simplex solution of typical maximization and minimization problems has been
shown in this module. However, there are several special types of atypical linear program-
ming problems. Although these special cases do not occur frequently, they will be described
within the simplex framework so that you can recognize them when they arise.

For irregular problems the
general simplex procedure does

not always apply.

Basic
400 200 0 0 �M

cj Variables Quantity x1 x2 s1 s2 A1

�M A1 5 0 0 1/8 � 3/4 1

200 x2 5 0 1 � 1/8 � 1/4 0

400 x1 20 1 0 0 1 0

zj 9,000 � 5M 400 200 �25 � M/8 350 � 3M/4 �M

cj � zj 0 0 25 � M/8 �350 � 3M/4 0
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Figure A-5
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These special types include problems with more than one optimal solution, infeasible
problems, problems with unbounded solutions, problems with ties for the pivot column or
ties for the pivot row, and problems with constraints with negative quantity values.

Consider the Beaver Creek Pottery Company example with the objective function changed
as follows.

Z � 40x1 � 50x2

to

Z � 40x1 � 30x2
maximize Z � 40x1 � 30x2

subject to

x1 � 2x2 � 40
4x1 � 3x2 � 120

x1, x2 � 0

The graph of this model is shown in Figure A-5. The slight change in the objective function
makes it now parallel to the constraint line, 4x1 � 3x2 � 120. Therefore, as the objective
function edge moves outward from the origin, it touches the whole line segment BC rather
than a single extreme corner point before it leaves the feasible solution area. The endpoints
of this line segment, B and C, are typically referred to as the alternate optimal solutions. It is
understood that these points represent the endpoints of a range of optimal solutions.

Multiple Optimal Solutions

Alternate optimal solutions have
the same Z value but different

variable values.

The optimal simplex tableau for this problem is shown in Table A-25. This corresponds
to point C in Figure A-5.

The fact that this problem contains multiple optimal solutions can be determined from
the cj � zj row. Recall that the cj � zj row values are the net increases in profit per unit for
the variable in each column. Thus, cj � zj values of zero indicate no net increase in profit
and no net loss in profit. We would expect the basic variables, s1 and x1, to have zero cj � zj
values because they are part of the basic feasible solution; they are already in the solution so
they cannot be entered again. However, the x2 column has a cj � zj value of zero and it is

For a multiple optimal solution
the cj � zj (or zj � cj) value for a

nonbasic variable in the final
tableau equals zero.



To determine the alternate endpoint solution, let x2 be the entering variable (pivot
column) and select the pivot row as usual. This selection results in the s1 row being the
pivot row. The alternate solution corresponding to point B in Figure A-5 is shown in Table
A-26.

Irregular Types of Linear Programming Problems A-25

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

0 s1 10 0 5/4 1 �1/4

40 x1 30 1 3/4 0 1/4

zj 1,200 40 30 0 10

cj � zj 0 0 0 �10

Table A-25
The Optimal Simplex Tableau

Basic
40 50 0 0

cj Variables Quantity x1 x2 s1 s2

40 x2 8 0 1 4/5 �1/5

30 x1 24 1 0 �3/5 2/5

zj 1,200 40 30 0 10

cj � zj 0 0 0 �10

Table A-26
The Alternative Optimal

Tableau

not part of the basic feasible solution. This means that if some mugs (x2) were produced,
we would have a new product mix but the same total profit. Thus, a multiple optimal solu-
tion is indicated by a cj � zj (or zj � cj) row value of zero for a nonbasic variable.

An alternate optimal solution is
determined by selecting the non-

basic variable with cj � zj � 0 as
the entering variable.

An Infeasible Problem

An infeasible problem does not
have a feasible solution space.

Another linear programming irregularity is the case where a problem has no feasible solu-
tion area; thus, there is no basic feasible solution to the problem.

An example of an infeasible problem is formulated next and depicted graphically in
Figure A-6.

maximize Z � 5x1 � 3x2

subject to

4x1 � 2x2 � 8
x1 � 4
x2 � 6

x1, x2 � 0

The three constraints do not overlap to form a feasible solution area. Because no point
satisfies all three constraints simultaneously, there is no solution to the problem. The final
simplex tableau for this problem is shown in Table A-27.

The tableau in Table A-27 has all zero or negative values in the cj � zj row, indicating
that it is optimal. However, the solution is x2 � 4, A1 � 4, and A2 � 2. Because the existence
of artificial variables in the final solution makes the solution meaningless, this is not a real

An infeasible problem has an
artificial variable in the final

simplex tableau.
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Basic
5 3 0 0 0 �M �M

cj Variables Quantity x1 x2 s1 s2 s3 A1 A2

3 x2 4 2 1 1/2 0 0 0 0

�M A1 4 1 0 0 �1 0 1 0

�M A2 2 �2 0 �1/2 0 �1 0 1

zj 12 � 6M 6 � M 3 3/2 � M/2 M M �M �M

cj � zj �1 � M 0 �3/2 � M/2 �M �M 0 0

Table A-27
The Final Simplex Tableau for

an Infeasible Problem
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Graph of an infeasible problem

An Unbounded Problem

solution. In general, any time the cj � zj (or zj � cj) row indicates that the solution is opti-
mal but there are artificial variables in the solution, the solution is infeasible. Infeasible
problems do not typically occur, but when they do they are usually a result of errors in
defining the problem or in formulating the linear programming model.

In some problems the feasible solution area formed by the model constraints is not closed.
In these cases it is possible for the objective function to increase indefinitely without ever
reaching a maximum value because it never reaches the boundary of the feasible solution
area.

An example of this type of problem is formulated next and shown graphically in
Figure A-7.

maximize Z � 4x1 � 2x2

subject to

x1 � 4
x2 � 2

x1, x2 � 0

In an unbounded problem the
objective function can increase

indefinitely because the solution
space is not closed.
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An unbounded problem

Basic
4 2 0 0

cj Variables Quantity x1 x2 s1 s2

4 x1 4 0 0 �1 0 4 ÷ –1 � �4

0 s2 2 1 1 0 1 2 ÷ 0 � ∞

zj 16 4 0 �4 0

cj � zj 0 2 4 0

Table A-28
The Second Simplex Tableau

In Figure A-7 the objective function is shown to increase without bound; thus, a solution is
never reached.

The second tableau for this problem is shown in Table A-28. In this simplex tableau, s1 is
chosen as the entering nonbasic variable and pivot column. However, there is no pivot row
or leaving basic variable. One row value is �4 and the other is undefined. This indicates
that a “most constrained” point does not exist and that the solution is unbounded. In gen-
eral, a solution is unbounded if the row value ratios are all negative or undefined.

A pivot row cannot be selected for
an unbounded problem.

Tie for the Pivot Column

A tie for the pivot column is
broken arbitrarily.

Unlimited profits are not possible in the real world; an unbounded solution, like an
infeasible solution, typically reflects an error in defining the problem or in formulating the
model.

Sometimes when selecting the pivot column, you may notice that the greatest positive
cj � zj (or zj � cj) row values are the same; thus, there is a tie for the pivot column. When
this happens, one of the two tied columns should be selected arbitrarily. Even though one
choice may require fewer subsequent iterations than the other, there is no way of knowing
this beforehand.

It is also possible to have a tie for the pivot row (i.e., two rows may have identical lowest
nonnegative values). Like a tie for a pivot column, a tie for a pivot row should be broken
arbitrarily. However, after the tie is broken, the basic variable that was the other choice for

Tie for the Pivot 
Row—Degeneracy
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Table A-30
The Third Simplex Tableau with

Degeneracy

Table A-29
The Second Simplex Tableau

with a Tie for the Pivot Row

the leaving basic variable will have a quantity value of zero in the next tableau. This condi-
tion is commonly referred to as degeneracy because theoretically it is possible for subse-
quent simplex tableau solutions to degenerate so that the objective function value never
improves and optimality never results. This occurs infrequently, however.

In general, tableaus with ties for the pivot row should be treated normally. If the simplex
steps are carried out as usual, the solution will evolve normally.

The following is an example of a problem containing a tie for the pivot row.

maximize Z � 4x1 � 6x2

subject to

6x1 � 4x2 � 24
x2 � 3

5x1 � 10x2 � 40
x1, x2 � 0

For the sake of brevity we will skip the initial simplex tableau for this problem and go
directly to the second simplex tableau in Table A-29, which shows a tie for the pivot row
between the s1 and s3 rows.

The s3 row is selected arbitrarily as the pivot row, resulting in the third simplex tableau,
shown in Table A-30.

Note that in Table A-30 a quantity value of zero now appears in the s1 row, representing
the degenerate condition resulting from the tie for the pivot row. However, the simplex pro-
cess should be continued as usual: s2 should be selected as the entering basic variable and
the s1 row should be selected as the pivot row. (Recall that the pivot row value of zero is the
minimum nonnegative quotient.) The final optimal tableau is shown in Table A-31.

A tie for the pivot row is broken
arbitrarily and can lead to

degeneracy.

Basic
4 6 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

0 s1 12 6 0 1 �4 0 12 ÷ 6 � 2

6 x2 3 0 1 0 1 0 Tie

0 s3 10 5 0 0 �10 1 10 ÷ 5 � 2

zj 18 0 6 0 6 0

cj � zj 4 0 0 �6 0

�

Basic
4 6 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

0 s1 0 0 0 1 8 
6/5

6 x2 3 0 1 0 1 0

4 x1 2 1 0 0 �2 1/5

zj 26 4 6 0 �2 4/5

cj � zj 0 0 0 2 �4/5
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Basic
4 6 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

0 s2 0 0 0 1/8 1 �3/20

6 x2 3 0 1 �1/8 0 3/20

4 x1 2 1 0 1/4 0 �1/10

zj 26 4 6 1/4 0 1/2

cj � zj 0 0 �1/4 0 �1/2

Table A-31
The Optimal Simplex Tableau

for a Degenerate Problem
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Graph of a degenerate solution

Notice that the optimal solution did not change from the third to the optimal simplex
tableau. The graphical analysis of this problem shown in Figure A-8 reveals the reason for
this.

Degeneracy occurs in a simplex
problem when a problem

continually loops back to the same
solution or tableau.

Negative Quantity Values

Standard form for simplex
solution requires positive

right-hand-side values.

Notice that in the third tableau (Table A-30) the simplex process went to point B, where
all three constraint lines intersect. This is, in fact, what caused the tie for the pivot row and
the degeneracy. Subsequently, the simplex process stayed at point B in the optimal tableau
(Table A-31). The two tableaus represent two different basic feasible solutions correspond-
ing to two different sets of model constraint equations.

Occasionally a model constraint is formulated with a negative quantity value on the right
side of the inequality sign—for example,

�6x1 � 2x2 � �30

This is an improper condition for the simplex method, because for the method to work, all
quantity values must be positive or zero.

This difficulty can be alleviated by multiplying the inequality by �1, which also changes
the direction of the inequality.

(�1) (�6x1 � 2x2 � �30)
6x1 � 2x2 � 30

A negative right-hand-side value
is changed to a positive by multi-

plying the constraint by –1, which
changes the inequality sign.



A-30 Module A The Simplex Solution Method

The Dual 

Now the model constraint is in proper form to be transformed into an equation and solved
by the simplex method.

Multiple optimal solutions are identified by cj � zj (or zj � cj) � 0 for a nonbasic variable.
To determine the alternate solution(s), enter the nonbasic variable(s) with a cj � zj value
equal to zero.

An infeasible problem is identified in the simplex procedure when an optimal solution is
achieved (i.e., when all cj � zj � 0) and one or more of the basic variables are artificial.

An unbounded problem is identified in the simplex procedure when it is not possible to
select a pivot row—that is, when the values obtained by dividing the quantity values by the
corresponding pivot column values are negative or undefined.

Summary of Simplex
Irregularities

The original linear programming
model is called the primal, and
the alternative form is the dual.

Every linear programming model has two forms: the primal and the dual. The original
form of a linear programming model is called the primal. All the examples in this module
are primal models. The dual is an alternative model form derived completely from the pri-
mal. The dual is useful because it provides the decision maker with an alternative way of
looking at a problem. Whereas the primal gives solution results in terms of the amount of
profit gained from producing products, the dual provides information on the value of the
constrained resources in achieving that profit.

The following example will demonstrate how the dual form of a model is derived and
what it means. The Hickory Furniture Company produces tables and chairs on a daily
basis. Each table produced results in $160 in profit; each chair results in $200 in profit. The
production of tables and chairs is dependent on the availability of limited resources—
labor, wood, and storage space. The resource requirements for the production of tables and
chairs and the total resources available are as follows.

Resource Requirements

Resource Table Chair Total Available per Day

Labor (hr) 2 4 40

Wood (bd ft) 18 18 216

Storage (ft2) 24 12 240

The company wants to know the number of tables and chairs to produce per day to
maximize profit. The model for this problem is formulated as follows.

maximize Z � $160x1 � 200x2

subject to

2x1 � 4x2 � 40 hr of labor
18x1 � 18x2 � 216 bd ft of wood
24x1 � 12x2 � 240 ft2 of storage space

x1, x2 � 0

The dual solution variables
provide the value of the resources,

that is, shadow prices.
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The dual is formulated entirely
from the primal.

A primal maximization model
with � constraints converts to

a dual minimization model
with � constraints, and vice versa.

where

x1 � number of tables produced
x2 � number of chairs produced

This model represents the primal form. For a primal maximization model, the dual form is
a minimization model. The dual form of this example model is

minimize Z � 40y1 � 216y2 � 240y3

subject to

2y1 � 18y2 � 24y3 � 160
4y1 � 18y2 � 12y3 � 200

y1, y2, y3 � 0

The specific relationships between the primal and the dual demonstrated in this
example are as follows.

1. The dual variables, y1, y2, and y3, correspond to the model constraints in the primal.
For every constraint in the primal there will be a variable in the dual. For example,
in this case the primal has three constraints; therefore, the dual has three decision
variables.

2. The quantity values on the right-hand side of the primal inequality constraints are
the objective function coefficients in the dual. The constraint quantity values in the
primal, 40, 216, and 240, form the dual objective function: Z � 40y1 � 216y2 �
240y3.

3. The model constraint coefficients in the primal are the decision variable coefficients
in the dual. For example, the labor constraint in the primal has the coefficients 2 and
4. These values are the y1 variable coefficients in the model constraints of the dual:
2y1 and 4y1.

4. The objective function coefficients in the primal, 160 and 200, represent the model
constraint requirements (quantity values on the right-hand side of the constraint) in
the dual.

5. Whereas the maximization primal model has � constraints, the minimization dual
model has � constraints.

The primal – dual relationships can be observed by comparing the two model forms shown
in Figure A-9.

Now that we have developed the dual form of the model, the next step is determining
what the dual means. In other words, what do the decision variables y1, y2, and y3 mean,
what do the � model constraints mean, and what is being minimized in the dual objective
function?

The dual model can be interpreted by observing the simplex solution to the primal form of
the model. The simplex solution to the primal model is shown in Table A-32.

Interpreting this primal solution, we have

x1 � 4 tables
x2 � 8 chairs
s3 � 48 ft2 of storage space
Z � $2,240 profit

Interpreting the Dual Model
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Basic 
160 200 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

200 x2 8 0 1 1�2 �1�18 0

160 x1 4 1 0 �1�2 1�9 0

0 s3 48 0 0 6 �2 1

zj 2,240 160 200 20 20�3 0

cj� zj 0 0 �20 �20�3 0

Table A-32
The Optimal Simplex Solution

for the Primal Model

cj qi

160

200

160 200 40 216 240

40

216

240

4

18

12

2

18

24

2y1 + 18y2 + 24y3

4y1 + 18y2 + 12y3

x2 �

x2 �

x2 �

y1, y2, y3     0�

subject to:
subject to:

Primal Dual

minimize Zd = y1 + y2 + y3maximize Zp = x1 + x2

x1 +

x1 +

x1 +

�

�

x1, x2     0�

Figure A-9

The primal – dual relationships

This optimal primal tableau also contains information about the dual. In the cj � zj row of
Table A-32, the negative values of �20 and �20/3 under the s1 and s2 columns indicate that
if one unit of either s1 or s2 were entered into the solution, profit would decrease by $20 or
$6.67 (i.e., 20/3), respectively.

Recall that s1 represents unused labor and s2 represents unused wood. In the present
solution s1 and s2 are not basic variables, so they both equal zero. This means that all of the
material and labor are being used to make tables and chairs, and there are no excess (slack)
labor hours or board feet of material left over. Thus, if we enter s1 or s2 into the solution,
then s1 or s2 no longer equals zero, we would be decreasing the use of labor or wood. If, for
example, one unit of s1 is entered into the solution, then one unit of labor previously used
is not used, and profit is reduced by $20.

Let us assume that one unit of s1 has been entered into the solution so that we have one
hour of unused labor (s1 � 1). Now let us remove this unused hour of labor from the solu-
tion so that all labor is again being used. We previously noted that profit was decreased by
$20 by entering one hour of unused labor; thus, it can be expected that if we take this hour
back (and use it again), profit will be increased by $20. This is analogous to saying that if we
could get one more hour of labor, we could increase profit by $20. Therefore, if we could
purchase one hour of labor, we would be willing to pay up to $20 for it because that is the
amount by which it would increase profit.



The negative cj � zj row values of $20 and $6.67 are the marginal values of labor (s1) and
wood (s2), respectively. These dual values are also often referred to as shadow prices, since
they reflect the maximum “price” one would be willing to pay to obtain one more unit of
the resource.

What happened to the third resource, storage space? The answer can be seen in Table 
A-32. Notice that the cj � zj row value for s3 (which represents unused storage space) is
zero. This means that storage space has a marginal value of zero; that is, we would not be
willing to pay anything for an extra foot of storage space.

The reason more storage space has no marginal value is because storage space was not
a limitation in the production of tables and chairs. Table A-32 shows that 48 square feet of
storage space were left unused (i.e., s3 � 48) after the 4 tables and 8 chairs were produced.
Since the company already has 48 square feet of storage space left over, an extra square foot
would have no additional value; the company cannot even use all of the storage space it has
available.

We need to consider one additional aspect of these marginal values. In our discussion
of the marginal value of these resources, we have indicated that the marginal value (or
shadow price) is the maximum amount that would be paid for additional resources. The
marginal value of $60 for one hour of labor is not necessarily what the Hickory
Furniture Company would pay for an hour of labor. This depends on how the objective
function is defined. In this example we are assuming that all of the resources available,
40 hours of labor, 216 board feet of wood, and 240 square feet of storage space, are
already paid for. Even if the company does not use all the resources, it still must pay for
them. They are sunk costs. In other words, the cost of any additional resources secured
are included in the objective function coefficients. As such, the profit values in the objec-
tive function for each product are unaffected by how much of a resource is actually used;
the profit is independent of the resources used. If the cost of the resources is not
included in the profit function, then securing additional resources would reduce the
marginal value.

Continuing our analysis, we note that the profit in the primal model was shown to be
$2,240. For the furniture company, the value of the resources used to produce tables and
chairs must be in terms of this profit. In other words, the value of the labor and wood
resources is determined by their contribution toward the $2,240 profit. Thus, if the com-
pany wanted to assign a value to the resources it used, it could not assign an amount greater
than the profit earned by the resources. Conversely, using the same logic, the total value of
the resources must also be at least as much as the profit they earn. Thus, the value of all the
resources must exactly equal the profit earned by the optimal solution.

Now let us look again at the dual form of the model.

The Dual A-33

John Von Neumann, the famous Hungarian mathematician, is
credited with many contributions in science and mathematics,
including crucial work on the development of the atomic
bomb during World War II and the development of the com-
puter following the war. In 1947 George Dantzig visited Von

Neumann at the Institute for Advanced Study at Princeton and
described the linear programming technique to him. Von
Neumann grasped the technique immediately, because he had
been working on similar concepts himself, and went on to
explain duality to Dantzig for the first time.

for John Von NeumannTime Out

The cj�zj values for slack variables
are the marginal values of the con-

straint resources, i.e., shadow prices.

If a resource is not completely
used, i.e., there is slack, its

marginal value is zero.

The shadow price is the maxi-
mum amount that should be paid

for one additional unit of a
resource.

The total marginal value of the
resources equals the optimal profit.
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Sensitivity Analysis 

minimize Zd � 40y1 � 16y2 � 240y3

subject to

2y1 � 18y2 � 24y3 � 160
4y1 � 18y2 � 12y3 � 200

y1, y2, y3, � 0

Given the previous discussion on the value of the model resources, we can now define
the decision variables of the dual, y1, y2, and y3, to represent the marginal values of the
resources:

y1 � marginal value of 1 hr of labor � $20
y2 � marginal value of 1 bd ft of wood � $6.67
y3 � marginal value of 1 ft2 of storage space � $0

The importance of the dual to the decision maker lies in the information it provides about
the model resources. Often the manager is less concerned about profit than about the use of
resources because the manager often has more control over the use of resources than over
the accumulation of profits. The dual solution informs the manager of the value of the
resources, which is important in deciding whether or not to secure more resources and how
much to pay for these additional resources.

If the manager secures more resources, the next question is “How does this affect the
original solution?” The feasible solution area is determined by the values forming the
model constraints, and if those values are changed, it is possible for the feasible solution
area to change. The effect on the solution of changes to the model is the subject of sensitiv-
ity analysis, the next topic to be presented here.

The dual variables equal the
marginal value of the resources,

the shadow prices.

Use of the Dual

The dual provides the decision
maker with a basis for deciding

how much to pay for more
resources.

In this section we will show how sensitivity ranges are mathematically determined using
the simplex method. While this is not as efficient or quick as using the computer, close
examination of the simplex method for performing sensitivity analysis can provide a more
thorough understanding of the topic.

To demonstrate sensitivity analysis for the coefficients in the objective function, we will use
the Hickory Furniture Company example developed in the previous section. The model for
this example was formulated as

maximize Z � $160x1 � 200x2

subject to

2x1 � 4x2 � 40 hr of labor
18x1 � 18x2 � 216 bd ft of wood
24x1 � 12x2 � 240 ft2 of storage space

x1, x2 � 0

where

x1 � number of tables produced
x2 � number of chairs produced

Changes in Objective
Function Coefficients
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Figure A-10
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Basic 
160 200 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

200 x2 8 0 1 1�2 �1�18 0

160 x1 4 1 0 �1�2 1�9 0

0 s3 48 0 0 6 �2 1

zj 2,240 160 200 20 20�3 0

cj � zj 0 0 �20 �20�3 0

Table A-33
The Optimal Simplex Tableau

The coefficients in the objective function will be represented symbolically as cj (the same
notation used in the simplex tableau). Thus, c1 � 160 and c2 � 200. Now, let us consider
a change in one of the cj values by an amount �. For example, let us change c1 � 160 by
� � 90. In other words, we are changing c1 from $160 to $250. The effect of this change on
the solution of this model is shown graphically in Figure A-10.

Originally, the solution to this problem was located at point B in Figure A-10, where
x1 � 4 and x2 � 8. However, increasing c1 from $160 to $250 shifts the slope of the objec-
tive function so that point C (x1 � 8, x2 � 4) becomes the optimal solution. This demon-
strates that a change in one of the coefficients of the objective function can change the opti-
mal solution. Therefore, sensitivity analysis is performed to determine the range over
which cj can be changed without altering the optimal solution.

The range of cj that will maintain the optimal solution can be determined directly from
the optimal simplex tableau. The optimal simplex tableau for our furniture company
example is shown in Table A-33.

The sensitivity range for a cj value
is the range of values over which
the current optimal solution will

remain optimal.

First, consider a � change for c1. This will change the c1 value from c1 � 160 to
c1 � 160 � �, as shown in Table A-34. Notice that when c1 is changed to 160 � �, the new
value is included not only in the top cj row but also in the left-hand cj column. This is
because x1 is a basic solution variable. Since 160 � � is in the left-hand column, it becomes

� is added to cj in the optimal

simplex tableau.
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Basic
160 � � 200 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

200 x2 8 0 1 1�2 �1�18 0

160 � � x1 4 1 0 �1�2 1�9 0

0 s3 48 0 0 6 �2 1

zj 2,240 � 4� 160 � � 200 20 � ��2 20�3 � ��9 0

cj � zj 0 0 �20 � ��2 �20�3 � ��9 0

Table A-34
The Optimal Simplex Tableau

with c1 � 160 + � 

a multiple of the column values when the new zj row values and the subsequent cj � zj row
values, also shown in Table A-34, are computed.

The solution shown in Table A-34 will remain optimal as long as the cj � zj row values
remain negative. (If cj � zj becomes positive, the product mix will change, and if it becomes
zero, there will be an alternative solution.) Thus, for the solution to remain optimal,

�20 � ��2 � 0

and

�20�3 � ��9 � 0

Both of these inequalities must be solved for �.

�20 � ��2 � 0
��2 � 20

� � 40

and

�20/3 � ��9 � 0
���9 � 20�3

�� � 60
� � �60

Thus, � � 40 and � � �60. Now recall that c1 � 160 � �; therefore, � � c1 � 160.
Substituting the amount c1�160 for � in these inequalities,

� � 40
c1 � 160 � 40

c1 � 200

and

� � �60
c1 � 160 � �60

c1 � 100

Therefore, the range of values for c1 over which the solution basis will remain optimal
(although the value of the objective function may change) is

100 � c1 � 200

Next, consider a � change in c2 so that c2 � 200 � �. The effect of this change in the
final simplex tableau is shown in Table A-35.

For the solution to remain optimal
all values in the cj � zj row must

be � 0.
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Basic
160 200 � � 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

200 � � x2 8 0 1 1�2 �1�18 0

160 x1 4 1 0 �1�2 1�9 0

0 s3 48 0 0 6 �2 1

zj 2,240 � 8� 160 200 � � 20 � ��2 20�3 � ��18 0

cj � zj 0 0 �20 � ��2 �20�3 � ��18 0

Table A-35
The Optimal Simplex Tableau

with c2 � 200 � � 

As before, the solution shown in Table A-35 will remain optimal as long as the cj � zj
row values remain negative or zero. Thus, for the solution to remain optimal, we must have

�20 � ��2 � 0

and

�20�3 � ��18 � 0

Solving these inequalities for � gives

�20 ���2 � 0
���2 � 20

� � �40 

and

�20�3 � ��18 � 0
��18 � 20�3

� � 120

Thus, � � �40 and � � 120. Since c2 � 200 � �, we have � � c2 � 200. Substituting
this value for � in the inequalities yields

� � �40
c2 �200 � �40

c2 � 160

and

� � 120
c2 �200 � 120

c2 � 320

Therefore, the range of values for c2 over which the solution will remain optimal is

160 � c2 � 320

The ranges for both objective function coefficients are as follows.

100 � c1 � 200
160 � c2 � 320

However, these ranges reflect a possible change in either c1 or c2, not simultaneous
changes in both c1 and c2. Both of the objective function coefficients in this example were
for basic solution variables. Determining the cj sensitivity range for a decision variable that
is not basic is much simpler. Because it is not in the basic variable column, the � change
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Figure A-11
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does not become a multiple of the zj row. Thus, the � change will show up in only one col-
umn in the cj � zj row.

To demonstrate the effect of a change in the quantity values of the model constraints, we
will again use the Hickory Furniture Company example.

maximize Z � 160x1 � 200x2

subject to

2x1 � 4x2 � 40 hr of labor
18x1 � 18x2 � 216 bd ft of wood
24x1 � 12x2 � 240 ft2 of storage space

x1, x2 � 0

The quantity values 40, 216, and 240 will be represented symbolically as qi. Thus, q1 � 40,
q2 � 216, and q3 � 240. Now consider a � change in q2. For example, let us change q2 � 216
by � � 18. In other words, q2 is changed from 216 board feet to 234 board feet. The effect
of this change is shown graphically in Figure A-11.

In Figure A-11 a change in q2 is shown to have the effect of changing the feasible solution
area from 0ABCD to 0ABCD. Originally, the optimal solution point was B; however, the
change in q2 causes B to be the new optimal solution point. At point B the optimal solution is

x1 � 4
x2 � 8
s3 � 48

s1 and s2 � 0
Z � $2,240

At point B the new optimal solution is

x1 � 6
x2 � 7

Changes in Constraint
Quantity Values
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Table A-36
The Initial Simplex Tableau

s3 � 12
s1 and s2 � 0

Z � $2,360

Thus, a change in a qi value can change the values of the optimal solution. At some point an
increase or decrease in qi will change the variables in the optimal solution mix, including
the slack variables. For example, if q2 increases to 240 board feet, then the optimal solution
point will be at

x1 � 6.67
x2 � 6.67
s3 � 0

s1 and s2 � 0
Z � $2,400

Notice that s3 has left the solution; thus, the optimal solution mix has changed. At this
point, where q2 � 240, which is the upper limit of the sensitivity range for q2, the shadow
price will also change. Therefore, the purpose of sensitivity analysis is to determine the
range for qi over which the optimal variable mix will remain the same and the shadow price
will remain the same.

As in the case of the cj values, the range for qi can be determined directly from the opti-
mal simplex tableau. As an example, consider a � increase in the number of labor hours.
The model constraints become

2x1 � 4x2 � 40 � 1�
18x1 � 18x2 � 216 � 0�
24x1 � 12x2 � 240 � 0�

Notice in the initial simplex tableau for our example (Table A-36) that the changes in
the quantity column are the same as the coefficients in the s1 column.

The sensitivity range for a qi,
value is the range of values over

which the right-hand-side values
can vary without changing the

solution variable mix, including
slack variables and the shadow

prices.

This duplication will carry through each subsequent tableau, so the s1 column values
will duplicate the � changes in the quantity column in the final tableau (Table A-37).

In effect, the � changes form a separate column identical to the s1 column. Therefore, to
determine the � change, we need only observe the slack (si) column corresponding to the
model constraint quantity (qi) being changed.

Recall that a requirement of the simplex method is that the quantity values not be nega-
tive. If any qi value becomes negative, the current solution will no longer be feasible and
a new variable will enter the solution. Thus, the inequalities

A � in a qi value is duplicated in
the si column in the final tableau.

Basic
160 200 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

0 1 40 � 1� 2 4 1 0 0

0 s2 216 � 0� 18 18 0 1 0

0 s3 240 � 0� 24 12 0 0 1

zj 0 0 0 0 0 0

cj � zj 160 200 0 0 0
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Basic
160 200 0 0 0

cj Variables Quantity x1 x2 s1 s2 s3

200 x2 8 � �/2 0 1 1/2 �1/18 0

160 x1 4 � �/2 1 0 �1/2 1/9 0

0 s3 48 � 6� 0 0 6 �2 1

zj 2,240 � 20� 160 200 20 20/3 0

cj � zj 0 0 �20 �20/3 0

Table A-37
The Final Simplex Tableau

8 � ��2 � 0
4 � ��2 � 0
48 � 6� � 0

are solved for �:

8 � ��2 � 0
��2 � �8

� � �16

and

4 � ��2 � 0
���2 � �4

� � 8

and

48 � 6� � 0
6� � �48
� � �8

Since

q1 � 40 � �

then

� � q1 �40

These values are substituted into the inequalities � � �16, � � 8, and � � �8 as follows.

� � �16
q1 �40 � �16

q1 � 24
� � 8

q1 �40 � 8
q1 � 48
� � �8

q1 �40 � �8
q1 � 32

Summarizing these inequalities, we have

24 � 32 � q1 � 48
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The value of 24 can be eliminated, since q1 must be greater than 32; thus,

32 � q1 � 48

As long as q1 remains in this range, the present basic solution variables will remain the
same and feasible. However, the quantity values of those basic variables may change. In
other words, although the variables in the basis remain the same, their values can change.

To determine the range for q2 (where q2 � 216 � �), the s2 column values are used to
develop the � inequalities.

8 � ��18 � 0
4 � ��9 � 0
48 � 2� � 0

The inequalities are solved as follows.

8 � ��18 � 0
���18 � �8

� � 144

4 � ��9 � 0
��9 � �4

� � �36

48 � 2� � 0
�2� � �48

� � 24

Since

q2 � 216 � �

we have

� � q2 � 216

Substituting this value into the inequalities � � 144, � � �36, and � � 24 gives a range of
possible values for q2:

� � 144
q2�216 � 144

q2 � 360

� � �36
q2�216 � �36

q2 � 180

� � 24
q2�216 � 24

q2 � 240

That is,

180 � q2 � 240 � 360


