
Object-oriented programming with Java

Ahmed Al-Ajeli 1

Understanding class

definitions

Exploring source code

Ahmed Al-Ajeli

Lecture 2

2

Main concepts to be covered

• fields

• constructors

• methods

• parameters

• assignment statements

Object-oriented programming with Java

Ahmed Al-Ajeli 2

3

Ticket machines – an external

view

• Exploring the behaviour of a typical

ticket machine.

– Use the naive-ticket-machine project

 (We will assume the customer is honest)

– Machines supply tickets of a fixed price.

• How is that price determined?

– How is ‘money’ entered into a machine?

– How does a machine keep track of the

money that is entered?

4

public class TicketMachine

{

 // The price of a ticket from this machine.

 private int price;

 // The amount of money entered by a customer so far.

 private int balance;

 // The total amount of money collected by this machine.

 private int total;

 public TicketMachine(int cost)

 {

 price = cost;

 balance = 0;

 total = 0;

 }

Demo of naïve-ticket-machine

Object-oriented programming with Java

Ahmed Al-Ajeli 3

5

 public int getPrice()

 {

 return price;

 }

 public int getBalance()

 {

 return balance;

 }

 public void insertMoney(int amount)

 {

 balance = balance + amount;

 }

 public void printTicket()

 {

 // Simulate the printing of a ticket.

 System.out.println("##################");

 System.out.println("# The Eclipse Line");

 System.out.println("# Ticket");

 System.out.println("# " + price + " cents.");

 System.out.println("##################");

 System.out.println();

 total = total + balance;

 balance = 0;

 }

}

6

Ticket machines – an internal

view

• Interacting with an object gives us

clues about its behaviour.

• Looking inside allows us to determine

how that behaviour is provided or

implemented.

• All Java classes have a similar-looking

internal view.

Object-oriented programming with Java

Ahmed Al-Ajeli 4

7

Basic class structure

public class TicketMachine

{

 Inner part omitted.

}

public class ClassName

{

 Fields

 Constructors

 Methods

}

The outer wrapper

of TicketMachine

The inner

contents of a

class

8

Keywords

• Words with a special meaning in the

language:

– public

– class

– private

– int

• Also known as reserved words.

• Always entirely lower-case.

Object-oriented programming with Java

Ahmed Al-Ajeli 5

9

Fields
• Fields store values

for an object.

• They are also known
as instance variables.

• Fields define the
state of an object.

• Some values change
often.

• Some change rarely
(or not at all).

public class TicketMachine

{

 private int price;

 private int balance;

 private int total;

 Further details omitted.

}

private int price;

visibility modifier
type

variable name

10

Constructors

• Initialize an object.

• Have the same name as their class.

• Public visibility (since called by the

user)

• Close association with the fields:

– Initial values stored into the fields.

– Parameter values often used for these.

public TicketMachine(int cost)

{

 price = cost;

 balance = 0;

 total = 0;

}

Object-oriented programming with Java

Ahmed Al-Ajeli 6

11

Constructing objects

- Classname objectname = new Classname

 (parameters list);

- TicketMachine ticketMachine1= new

 TicketMachine (500);

• What will happen?

 - The new operator makes a

 TicketMachine object.

 - It invokes (calls) the constructor

 - It returns the object.

pattern

example

12

Assignment

• Values are stored into fields (and

other variables) via assignment

statements:

– variable = expression;

– balance = balance + amount;

• A variable can store just one value,

so any previous value is lost.

pattern

example

Object-oriented programming with Java

Ahmed Al-Ajeli 7

13

Choosing variable names

• There is a lot of freedom over choice

of names. Use it wisely!

• Choose expressive names to make

code easier to understand:

– price, amount, name, age, etc.

• Avoid single-letter or cryptic names:

– w, t5, xyz123

14

Methods

• Methods implement the behaviour of objects.

• Methods have a consistent structure

comprised of a header (signature) and a body.

• Accessor methods provide information about

an object.

• Mutator methods alter the state of an object.

• Other sorts of methods accomplish a variety

of tasks.

Object-oriented programming with Java

Ahmed Al-Ajeli 8

15

Method structure

• The header:
– public int getPrice()

• The header tells us:
– the visibility to objects of other classes;

– whether the method returns a result;

– the name of the method;

– whether the method takes parameters.

• The body encloses the method’s
statements.

16

Calling (activating) methods

• Calling a method within an object is
similar to sending a message to that
object.

 - Objectname.methodname (parameter list)

 - ticketmachine1.getPrice()

pattern

example

Actual parameters

Object-oriented programming with Java

Ahmed Al-Ajeli 9

17

Accessor (get) methods

public int getPrice()

{

 return price;

}

return type

method name

parameter list

(empty)

start and end of method body (block)

return statement

visibility modifier

18

Accessor methods

• An accessor method always has a
return type that is not void.

• An accessor method returns a value
(result) of the type given in the
header.

• The method will contain a return
statement to return the value.

• NB: Returning is not printing!

Object-oriented programming with Java

Ahmed Al-Ajeli 10

19

Test

• What is

wrong

here?

public class CokeMachine

{

private price;

public CokeMachine()

{

 price = 300

}

public int getPrice

{

 return Price;

}

(there are

five errors!)

20

Test
public class CokeMachine

{

private price;

public CokeMachine()

{

 price = 300

}

public int getPrice

{

 return Price;

}
}

;

()

int

-

• What is

wrong

here?

(there are

five errors!)

Object-oriented programming with Java

Ahmed Al-Ajeli 11

21

Mutator methods

• Have a similar method structure:
header and body.

• Used to mutate (i.e., change) an
object’s state.

• Achieved through changing the value
of one or more fields.

– They typically contain one or more
assignment statements.

– Often receive parameters.

22

Mutator methods

public void insertMoney(int amount)

{

 balance = balance + amount;

}

return type method name

formal parameter

visibility modifier

assignment statement
field being mutated

Object-oriented programming with Java

Ahmed Al-Ajeli 12

23

set mutator methods

• Fields often have dedicated set
mutator methods.

• These have a simple, distinctive
form:
– void return type

– method name related to the field name

– single formal parameter, with the same
type as the type of the field

– a single assignment statement

24

A typical set method

public void setDiscount(int amount)

{

 discount = amount;

}

We can easily infer that discount

is a field of type int, i.e:

private int discount;

Object-oriented programming with Java

Ahmed Al-Ajeli 13

25

Protective mutators

• A set method does not have to always

assign unconditionally to the field.

• The parameter may be checked for

validity and rejected if

inappropriate.

• Mutators thereby protect fields.

• Mutators support encapsulation.

26

String concatenation

• 4 + 5

9

• "wind" + "ow"

"window"

• "Result: " + 6

"Result: 6"

• "# " + price + " cents"

"# 500 cents"

overloading

Object-oriented programming with Java

Ahmed Al-Ajeli 14

27

Quiz

• System.out.println(5 + 6 + "hello");

• System.out.println("hello" + 5 + 6);

11hello

hello56

