Object-oriented programming with Java

Understanding class
definitions

Exploring source code

Ahmed Al-Ajeli

Lecture 2

Main concepts to be covered

- fields

constructors

methods

parameters
assignment statements

Ahmed Al-Ajeli



Object-oriented programming with Java

Ticket machines - an external
view

« Exploring the behaviour of a typical
ticket machine.
Use the naive-ticket-machine project
(We will assume the customer is honest)
Machines supply tickets of a fixed price.
» How is that price determined?
How is ‘money’ entered into a machine?

How does a machine keep track of the
money that is entered?

Demo of naive-ticket-machine

public class TicketMachine
{

// The price of a ticket from this machine.
private int price;
// The amount of money entered by a customer so far.

private int balance;
// The total amount of money collected by this machine.

private int total;

public TicketMachine (int cost)
{

price = cost;

balance = 0;

total = 0;
}

Ahmed Al-Ajeli



Object-oriented programming with Java

public int getPrice()
{
return price;

}

public int getBalance ()
{
return balance;

}

public void insertMoney (int amount)
{
balance = balance + amount;

}

public void printTicket()

{
// Simulate the printing of a ticket.
System.out.println ("#####H##E#H##HREHERE")
System.out.println("# The Eclipse Line");
System.out.println("# Ticket");
System.out.println("# " + price + " cents.");
System.out.println ("#####H###H##HREHERE")
System.out.println(),

total = total + balance;
balance = 0;

Ticket machines - an internal
view
* Interacting with an object gives us

clues about its behaviour.

» Looking inside allows us to determine
how that behaviour is provided or
implemented.

 All Java classes have a similar-looking
internal view.

Ahmed Al-Ajeli



Object-oriented programming with Java

Basic class structure

public class TicketMachine The QUter Wrap_per
{ of TicketMachine

|

Inner part omitted.

public class ClassName

{

Fields The inner
Constructors contents of a
\ Methods class

Keywords

« Words with a special meaning in the
language:
—public
—class
—private
—int
 Also known as reserved words.
« Always entirely lower-case.

Ahmed Al-Ajeli



Object-oriented programming with Java

Fields

= . Fields store values public class TicketMachine
i {
for an ObJeCt" private int price;
+ They are also known private int balance;
as instance variables private int totals
a4, . F]eldS deﬁne the ) Further details omitted.

i o state of an object.
¢ + Some values change

often.
* Some change rarely
s .. type .
(or not at all). v151b1l1tq‘d1ﬁer 1 variable name

private int price;

Constructors

public TicketMachine (int cost)

{

price = cost;
balance = 0;
total = 0;

}
Initialize an object.
Have the same name as their class.

Public visibility (since called by the
user)

Close association with the fields:

- Initial values stored into the fields.

- Parameter values often used for these.

Ahmed Al-Ajeli



Object-oriented programming with Java

Constructing objects

- Classname objectname = new Classname

(parameters list);

- TicketMachine ticketMachinel= new
TicketMachine (500) ;

« What will happen?
- The new operator makes a
TicketMachine object.
- It invokes (calls) the constructor
- It returns the object. u

Assignment

« Values are stored into fields (and
other variables) via assignment

statements:
- variable = expression;

—-balance = balance + amount;

A variable can store just one value,
SO any previous value is lost.

12

Ahmed Al-Ajeli



Object-oriented programming with Java

Choosing variable names

« There is a lot of freedom over choice
of names. Use it wisely!

« Choose expressive names to make
code easier to understand:
- price, amount, name, age, efc.
 Avoid single-letter or cryptic names:
-w, t5, xyz123

13

Methods

* Methods implement the behaviour of objects. |

+ Methods have a consistent structure .,
comprised of a header (signature) and a body.

£ - Accessor methods provide information about
§ an object.

« Mutator methods alter the state of an object.

« Other sorts of methods accomplish a variety
of tasks.

14

Ahmed Al-Ajeli



Object-oriented programming with Java

Method structure

» The header:
— public int getPrice ()

* The header tells us:
- the visibility to objects of other classes;
- whether the method returns a result;
- the name of the method;
- whether the method takes parameters.

+ The body encloses the method’ s
statements.

15

Calling (activating) methods

« Calling a method within an object is
similar to sending a message to that
object.

Actual parameters

- Objectname.methodname (parameter list)

- ticketmachinel.getPrice ()

16

Ahmed Al-Ajeli



Object-oriented programming with Java

Accessor (get) methods

return type

visibility modifier method name
\ parameter list
ublic int getPrice () (empty)

return price; «——— return statement

\ start and end of method body (block)

17

Accessor methods

« An accessor method always has a
return type that is not void.

« An accessor method returns a value
(result) of the type given in the
header.

« The method will contain a return
statement to return the value.

« NB: Returning is not printing!

18

Ahmed Al-Ajeli



Object-oriented programming with Java

Ahmed Al-Ajeli

Test

public class CokeMachine
{

private price;

public CokeMachine ()
{

price = 300
}

public int getPrice
{
return Price;

}

 What is
wrong
here?

(there are
five errors!)

19

Test

public class CokeMachine

{
privace ;

public CokeMachine ()

{
price =
}

public int getPri
{
retue ;

« What is
wrong
here?

(there are
five errors!)

20

10



Object-oriented programming with Java

Mutator methods

« Have a similar method structure:
header and body.

« Used to mutate (i.e., change) an
object’ s state.

« Achieved through changing the value
of one or more fields.

- They typically contain one or more
assignment statements.

- Often receive parameters.

21

Mutator methods

visibility modifier return type method name

\ / / formal parameter

public void insertMoney (int amount)

{

balance = balance + amount;

} I ‘\
field being mutated assignment statement

22

Ahmed Al-Ajeli 11



Object-oriented programming with Java

set mutator methods

 Fields often have dedicated set
mutator methods.

« These have a simple, distinctive
form:
—-void return type
- method name related to the field name

- single formal parameter, with the same
type as the type of the field

- a single assignment statement

23

A typical set method

public void setDiscount (int amount)

{

discount = amount;

}

We can easily infer that discount
is a field of type int, i.e:

private int discount;

24

Ahmed Al-Ajeli

12



Object-oriented programming with Java

Protective mutators

A set method does not have to always
assign unconditionally to the field.

The parameter may be checked for
validity and rejected if
inappropriate.

Mutators thereby protect fields.
Mutators support encapsulation.

25

String concatenation

4+5 _

9 =3 overloading
"wind" + "ow"

"window"

"Result: "+ 6

"Result: 6"

"#" + price + " cents”

“# 500 cents"

26

Ahmed Al-Ajeli

13



Object-oriented programming with Java

Quiz
« System.out.println(5 + 6 + "hello");

llhello

« System.out.println("hello” + 5 + 6);
hello56

27

Ahmed Al-Ajeli

14



