
 1

Stack Operations
If we place 10 plates on each other as in the following diagram, the result can

be called a stack. While it might be possible to remove a dish from the middle of the

stack, it is much more common to remove from the top. New plates can be added to

the top of the stack, but never to the bottom or middle –Figure(1):

A stack data structure follows the same principle as a stack of plates: New values are

added to the top of the stack, and existing values are removed from the top. Stacks in

general are useful structures for a variety of programming applications, and they can

easily be implemented using object-oriented programming methods. A stack is also

called a LIFO structure (Last-In, First-Out) because the last value put into the stack is

always the first value taken out.

Runtime Stack
The runtime stack is a memory array managed directly by the CPU, using the

ESP register, known as the stack pointer register. The ESP register holds a 32-bit

offset into some location on the stack. We rarely manipulate ESP directly; instead, it

is indirectly modified by instructions such as CALL, RET, PUSH, and POP.

ESP always points to the last value to be added to, or pushed on, the top of stack. To

demonstrate, let’s begin with a stack containing one value. In Figure (2), the ESP

(extended stack pointer) contains hexadecimal 00001000, the offset of the most

recently pushed value (00000006). In our diagrams, the top of the stack moves

downward when the stack pointer decreases in value:

Figure (1) Stack of Plates.

 2

Each stack location in this figure contains 32 bits, which is the case when a program

is running in 32-bit mode. In 16-bit real-address mode, the SP register points to the

most recently pushed value and stack entries are typically 16 bits long.

Push Operation
A 32-bit push operation decrements the stack pointer by 4 and copies a value

into the location in the stack pointed to by the stack pointer. Figure (3) shows the

effect of pushing 000000A5 on a

stack that already contains one value (00000006). Notice that the ESP register always

points to the top of the stack. The figure shows the stack ordering opposite to that of

the stack of plates we saw earlier, because the runtime stack grows downward in

memory, from higher addresses to lower addresses. Before the push, ESP =

00001000h; after the push, ESP = 00000FFCh. Figure (4) shows the same stack after

pushing a total of four integers.

Figure (2) A Stack Containing a Single Value.

Figure (3) Pushing Integers on the Stack

 3

Pop Operation
A pop operation removes a value from the stack. After the value is popped

from the stack, the stack pointer is incremented (by the stack element size) to point to

the next-highest location in the stack. Figure (5) shows the stack before and after the

value 00000002 is popped.

The area of the stack below ESP is logically empty, and will be overwritten the next

time the current program executes any instruction that pushes a value on the stack.

Figure (4) Stack, after Pushing 00000001 and 00000002.

Figure (5) Popping a Value from the Runtime Stack.

 4

Stack Applications
There are several important uses of runtime stacks in programs:

• A stack makes a convenient temporary save area for registers when they are used for

more than one purpose. After they are modified, they can be restored to their original

values.

• When the CALL instruction executes, the CPU saves the current subroutine’s return

address on the stack.

• When calling a subroutine, you pass input values called arguments by pushing them

on the stack.

• The stack provides temporary storage for local variables inside subroutines.

PUSH and POP Instructions

PUSH Instruction
The PUSH instruction first decrements ESP and then copies a source operand

into the stack. A 16-bit operand causes ESP to be decremented by 2. A 32-bit

operand causes ESP to be decremented by 4. There are three instruction formats:

PUSH reg/mem16

PUSH reg/mem32

PUSH imm32

Immediate values are always 32 bits in 32-bit mode. In real-address mode, immediate

values default to 16 bits, unless the .386 processor (or higher) directive is used.

POP Instruction
The POP instruction first copies the contents of the stack element pointed to

by ESP into a 16- or 32-bit destination operand and then increments ESP. If the

operand is 16 bits, ESP is incremented by 2; if the operand is 32 bits, ESP is

incremented by 4:

POP reg/mem16

POP reg/mem32

 5

Windows API Functions

With the release of Windows 95 by Microsoft in 1995, a new set of system

calls was introduced. This set was call the Windows 32 bit Application Program

Interface (Win32 API). The set consists of 32 bit system functions usable by any

Win32 application.

The application programming interface (API) is a set of functions available

from the operating system to support the programmer for building applications that

can communicate with the operating system. The API is also available to ease and

speed up the programming process. For example, several functions are available to

create, read, and delete a file. The programmer is not concerned of how these

functions operate; instead he or she can concentrate on tasks such as what data to

write to the file, how to represent the data inside the file, when to query the file and

when to delete it.

The purpose of the API was to provide a set of optimized system level

operations allowing applications to run faster. The set is currently supported by all

Windows platforms. All the API functions are stored in the following dynamic link

libraries: Kernel32.dll, User32.dll, Gui32.dll and Advapi.dll. When an process is

labeled a Win32 process it indicates that process uses the Win32 API. When a Win32

process is first executed it is analyzed by the operating system and the memory

address of each Win32 API system functions that it may call is exported from a DLL

and placed in an import address table (IAT). Each Win32 process has its own IAT and

when the process makes an API system call, it looks up the function’s address in the

IAT and passes to that address any necessary parameters and the function proceeds

with execution. When an system call is made it is usually from a process running in

User mode, the called function is filtered through the operating system to its

equivalent function in the Kernel of the operating system. Once in the kernel a service

is usually requested to carry out the operation and the result filters back up the user

application that originally made the call.

Coding in Win32 environment
As you may know Windows runs in protected mode and so our code will do so as

well. Windows provides a virtual address space of theoretically 4GB of memory for

every process. The use of this virtual memory allows the system to use the hard disk

for swapping when the physical memory isn't enough. When you code, you code in a

so called "flat" memory model. This means you don't need to care for the segment

registers anymore and that makes the ASM coding a hell easier. You only need

DWORD offsets when you address memory in Win32. In contrast to 16-bit systems

like DOS and Win 3.1, 32-bit systems use DWORDs as offsets. Do not modify the

segment registers or your program will destroyed with a chance of 99,99%. You will

use the 32-bit registers much more than before (if you haven't used them already

before). Let's take the LOOP instruction for example: Now the whole ECX will

decrement and not only CX. Remember that! In protected mode (as the name

suggests) the memory can be protected. So you may have read/write access, read only

access or no access at all.

Many people tried to use interrupts in Win32 inline ASM code. But this doesn't work

because you don't call REAL MODE interrupts. You would call the protected mode

INTs and the good old DOS INTs aren't available anymore. Instead of INTs you need

to use the Windows API. For a complete documentation take a look at Microsoft's

MSDN (http://www.msdn.microsoft.com). At last you must remind that you will

http://www.msdn.microsoft.com/

 6

code CASE SENSITIVE from now on! It's just like in C++. This is really important

and so write MessageBoxA and not mESSAGEboXa for example!

 Hello World! in Win32 ASM

 =========================

.386

.model flat

 extrn ExitProcess:proc

 extrn MessageBoxA:proc

.data

 msg_title DB "MessageBox title",0

 msg_message DB "Hello World!",0

.code

start:

 push 0

 push offset msg_title

 push offset msg_message

 push 0

 call MessageBoxA

 push 0

 call ExitProcess

end start

 And now the explanations.

 - .386

 - .model flat

 This is obvious. The processor directive MUST be before the memory model and it

must be at least a 386. The model directive says we use a flat memory model.

 - extrn ExitProcess:proc

 - extrn MessageBoxA:proc

 Here we import 2 APIs from Kernel32.dll. Do not forget the :proc after the API

names! The linker will give you no error, but your program will definitively

destroyed!

 - msg_title DB "MessageBox title",0

 Note that almost every string in Windows is zero terminated.

 - push 0

 7

 - push offset msg_title

 - push offset msg_message

 - push 0

 - call MessageBoxA

 At this time we call an API, the MessageBoxA API to be exactly.

 See below for more info.

 - push 0

 - call ExitProcess

 Yes, no INTs anymore. We use the ExitProcess API to quit. In this code example we

used 0 as exit code.

 Something more about APIs

 =========================

 The MessageBoxA call might look a little strange to you. Let's see what the MSDN

tells us about this API:

 int MessageBox(HWND hwndOwner, // handle of owner window

 LPCTSTR lpszText, // address of text in message box

 LPCTSTR lpszTitle, // address of title of message box

 UINT fuStyle // style of message box

);

 In Win32, parameters aren't passed in registers anymore. Instead they are pushed on

the stack. You really can assume that every parameter is DWORD size. If you code

'push 0' this instruction will push a DWORD 0 on the stack, not a WORD.

 If you take a closer look you will notice that the parameters are pushed on the stack

in the reverse order. So you have to push the last parameter as the first one and the

first parameter as the last one.

 Then simply call the API. The return value will always be in EAX.

 Do not forget to save register values which you need before you call an API. In good

old DOS times you knew exactly which registers will be destroyed by an INT call,

but in the case of APIs you never know. So this is especially important in loops

because ECX can be anything after the API call.

 8

 How to compile and link a Win32 program?

 ==

 For our 'hello world' program (hello.asm) we would compile it as the following:

 tasm32 /ml hello.asm

 tlink32 /Tpe /aa /c hello.obj,,,import32.lib

 As you can see you need to use tasm32.exe and tlink32.exe and not the DOS

versions .Let's discuss the parameters briefly:

/ml - compile case sensitive

 /Tpe - set's output to PE (Portable EXE), /Tpd would be DLL

 /aa - uses Windows API

 /c - case sensitive linking

 import32.lib - Normally, you specify only the import32.lib file for the linker. This is

the standard file and it's used by the linker for our API references. Import32.lib

contains all APIs from kernel32.dll, user32.dll and gdi32.dll (may be more, but at

least these ones).

