

Website Development
Lecture 18: Working with JQuery

 ==

1

JQuery

What You Will Learn in This Lecture:

 What jQuery is?

 How to use jQuery to enhance your pages, including adding rich?

 Visual effects and animations.

JavaScript is the de facto language for client-side scripting and interacting with

elements in your web pages at the client. JavaScript can do much more and is quite a

powerful programming language. But powerful as it may be, it has a few

shortcomings. One of the problems with JavaScript is that not all browsers interpret it

the same way. A lot of the JavaScript code you’ll write will work in all major

browsers, but subtle differences in code and behavior exist that make it difficult to

write code that behaves exactly the same in all major browsers. Also, JavaScript lacks

some useful features that would come in handy in your day-today JavaScript coding.

For example, it has built-in methods to find a specific element on a page (using

getElementById) and to find all elements of a specific HTML tag (using

getElementsByTagName), but it lacks features like getElementsByClassName to get a

list of elements with a specific class applied to them. The client-side ASP.NET AJAX

Library you were introduced to in the previous lecture helps to overcome some of

these problems, but it isn’t enough in all situations.

Fortunately, the Internet developer community has been very active developing

frameworks that use JavaScript under the hood and that extend its power, while

offering a very rich feature set that helps you create interactive client-side web pages.

Over the years, many JavaScript libraries have been developed — most of which are

free — including:

 Prototype (http://prototypejs.org)

 Scriptaculous, an add-on to Prototype (http://script.aculo.us)

 Ext JS (http://extjs.com)

 Dojo (http://dojotoolkit.org)

One of the frameworks that have gotten a lot of attention is jQuery. Initially

developed and released by John Resig in January 2006, jQuery has grown to be a very

http://prototypejs.org/
http://script.aculo.us/

Website Development
Lecture 18: Working with JQuery

 ==

2

popular client-side framework. It also caught the attention of Microsoft, which

decided to start shipping jQuery with Microsoft products. Initially, jQuery shipped

with the Microsoft ASP.NET MVC Framework, but it’s now also included in Visual

Studio and Visual Web Developer 2010.

An Introduction to jQuery

The main focus of the jQuery library has always been to simplify the way you access

the elements in your web pages, provide help in working with client-side events,

enable visual effects like animations, and make it easier to use Ajax in your

applications. In January 2006, John Resig announced the first version of jQuery,

which was followed by an official release of jQuery 1.0 in August 2006. Many more

versions would follow, with version 1.4.1 as the latest, stable release. You can

download the latest version of jQuery from the official web site at http://jquery.com.

Not only will you find the downloadable files there, but you’ll also find the

documentation, FAQs, tutorials, and much more information you can use to make the

most out of jQuery. Besides downloading the library from the jQuery web site, any

new web site you create using the ASP.NET Web Site template already contains a

Scripts folder with the necessary jQuery files. You see later how to add jQuery files to

your site manually. Because the jQuery library adds to the size of your web pages, it

should be a deliberate choice whether or not you include it in your site. When adding

the jQuery library to your site, you have a few choices to make.

Choosing the Location for Your jQuery Reference

To include jQuery in your web site, you have a couple options:

1. Add a reference to the jQuery library in just the web pages or user controls

that require it.

2. Add a reference to the jQuery library in the master page of your site so it’s

available in all pages.

Both methods have their own advantages and disadvantages. Adding a reference to

the jQuery library in just the pages that need it helps keep the size of your pages down

a bit. When your users browse only to pages without jQuery, they’ll never have to

Website Development
Lecture 18: Working with JQuery

 ==

3

download the library file. Once they’ve downloaded the file, the browser will cache a

copy of it, removing the need to download it again on subsequent visits to pages.

Adding the reference to jQuery in the master page of your site is quite convenient,

because all pages based on this master page automatically get access to the jQuery

functionality. However, this results in a small performance hit on the first page of

your site because the library needs to be downloaded from the server. Because the

jQuery library is quite small, you typically want to include the library in the master

page. Besides the location where you add your jQuery file, you also have a few

options with regard to the way you include the file.

Different Ways to include the jQuery Library

Because the jQuery library consists of a single file with JavaScript code, you can

embed a reference to the library in a page, user control, or master page using the

standard <script> syntax:

<script src="FileName.ext" type="text/javascript"></script>

It’s important to use a separate closing </script> tag because some browsers will

choke if you use a self-closing tag. I prefer to store all my client-side script files in a

Scripts folder in the root of my site, so a reference to the jQuery library (called

jquery-1.4.1.min.js) will end up like this:

<script src="/Scripts/jquery-1.4.1.min.js" type="text/javascript"></script>

You can also embed the reference inside the ScriptManager control that you have

added to the master. The ScriptManager control has a <Scripts> child element that

lets you register JavaScript files that will be added to the final page in the browser. In

its simplest form, a JavaScript file registered in the ScriptManager looks like this:

<asp:ScriptManager ID="ScriptManager1" runat="server">

<Scripts>

<asp:ScriptReference Path="~/Scripts/jquery-1.4.1.min.js"/>

</Scripts>

</asp:ScriptManager>

Another alternative is to refer to an online version of the library with Microsoft’s

Content Delivery Network (CDN) or Google Code. For more information on this, visit

Microsoft’s CDN site at www.asp.net/ajax/cdn or Google’s API site at

Website Development
Lecture 18: Working with JQuery

 ==

4

http://code.google.com/apis/ajaxlibs/. The advantages of using online versions of

external libraries are improved performance and lowered bandwidth for your servers.

Since it is likely that visitors to your site already have downloaded the shared scripts

when visiting another site, they don’t have to download them again when visiting

yours. In the following exercise, you add the jQuery library version 1.4.1 to the

master page.

Your First jQuery Page

In this exercise, you add the jQuery library to the master page so it’s available to all

pages in your site.

1. Start by adding a new Scripts folder to the root of the site in Visual Web

Developer.

2. Next, open the folder where you extracted the downloaded

code. If you followed the instructions in the Introduction of this

lecture, the file jquery-1.4.1.min.js is the actual jQuery library

and jquery-1.4.1-vsdoc.js is a documentation file for

IntelliSense and is used only in the context of VWD. Finally,

jquery.updnWatermark.js contains a plugin for jQuery and is

discussed toward the end of this lecture. Your Solution Explorer

should now look like Figure 1.

3. Next, it’s time to add the library to the site’s master page so the pages in your web

site have access to the jQuery library. To do this, open the file Frontend.master from

the MasterPages folder and switch it to Markup View if necessary. Locate the

ScriptManager control and add the following bolded markup to it:

<asp:ScriptManager ID="ScriptManager1" runat="server"

EnablePageMethods="true">

<Scripts>

<asp:ScriptReference Path="~/Scripts/jquery-1.4.1.min.js" />

</Scripts>

</asp:ScriptManager>

If your ScriptManager didn’t have a separate closing tag yet you should add one now

(and remove the slash (/) from the opening tag) or the code won’t be added correctly.

4. Save and close the master page because you’re done with it for now.

Figure 1

http://code.google.com/apis/ajaxlibs/

Website Development
Lecture 18: Working with JQuery

 ==

5

5. To try out the jQuery library, create a brand new Web Form in the Demos folder

based on your custom template. Call the page jQuery.aspx, and set its Title to jQuery

Demo.

6. With the new page open in Markup View, add the following code to the Content

block for cpMainContent:

<asp:Content ID=”Content2” ContentPlaceHolderID=”cpMainContent”

runat=”Server”>

<input id="Button1" type=" button" value="button" />

<script type="text/javascript">

$(document).ready(function() {

$('#MainContent').css('background-color', 'green')

$('#Button1').click(function() {

$('#MainContent').css('background-color', 'red')

.animate({ width: '100px', height: '800px' })

});

});

</script>

</asp:Content>

Just like many other programming languages, JavaScript (and thus jQuery) is quite

sensitive to missing quotes, brackets, and parentheses, so make sure you type this

code exactly as shown here. Note that while typing; IntelliSense pops up, helping you

complete the code, and giving you information about various methods and parameters

in a tooltip. If it doesn’t pop up, make sure you added the right <Scripts> element to

the master page. Also, try saving and closing all open documents and then reopen

jQuery.aspx.

7. Save the changes to the page and then press Ctrl+F5 to open it up in the browser.

Notice how the background color of the MainContent div has turned to green. Click

the button and notice how the background color changes to red and how the

MainContent element changes size, ending up with a width of 100 pixels and a height

of 800 pixels.

Website Development
Lecture 18: Working with JQuery

 ==

6

How It Works

Although the effects shown in this exercise aren’t that fancy, a lot is going on under

the hood to make this example work. To understand how it works, first look back at

the master page where you added a reference to the jQuery library:

<asp:ScriptManager ID="ScriptManager1" runat="server"

EnablePageMethods="true">

<Scripts>

<asp:ScriptReference Path="~/Scripts/jquery-1.4.1.min.js" />

</Scripts>

</asp:ScriptManager>

This tells the script manager to include a script element pointing to the jQuery library.

If you look in the HTML source for the page in the browser you should see the

following script element:

<script src="../Scripts/jquery-1.4.1.min.js" type="text/javascript"></script>

This in turn tells the browser to download the jquery-1.4.1.min.js file from the Scripts

folder, giving your page access to all functionality included in the jQuery library. The

next thing to look at is the code in the jQuery demo page. First, you added a standard

<script> block that can contain JavaScript. Inside this block, you added some jQuery

code that is fired as soon as the browser is done with loading the page. Everything

between the opening ({) and closing (}) curly braces are executed when the page is

ready:

<script type="text/JavaScript">

$(document).ready (function () {

// Remainder of the code skipped

});

</script>

Because the jQuery code interacts with the elements on the page, you often have to

wait until the entire page has loaded so the elements you’re programming against are

available. Adding jQuery code like this is a standard practice to delay execution of the

code until the entire page is ready. The code that is executed when the page is ready

consists of two parts. The first line of code sets the background color of the

MainContent div to green:

Website Development
Lecture 18: Working with JQuery

 ==

7

$('#MainContent').css ('background-color', 'green')

This code gets a reference to the MainContent div element and then calls a css method

to change the background color to green. Remember $get from the previous lecture

that gets a reference to an element in the page by its id in the client-side ASP.NET

AJAX Library? In this example, $('#MainContent') is jQuery’s equivalent, but as you

see later, it’s much more powerful. The second part sets up a click handler for the

HTML button you added to the page. Inside the click handler you see some code that

changes the background color of the MainContent div to red, and changes the height

and the width of it using a fluid

Animation:

$('#Button1').click (function () {

$('#MainContent').css ('background-color', 'red').animate ({width: '100px',

height:'800px' })

});

Again, you learn more about how jQuery is able to find the button and the div element

and how the css and animate methods work later in this lecture, so don’t worry too

much if none of this is making a lot of sense right now. When you click the button in

the browser, the MainContent’s background color is changed to red, and then its

width and height are changed to 100 and 800 pixels, respectively. When you typed the

jQuery code you may have noticed you got help from IntelliSense. As soon as you

typed $(you got a tooltip explaining the information you can pass to this function.

Likewise, IntelliSense helps you find and complete the css method and the various

arguments you need to pass to it as shown in Figure 2 (which shows the tooltip under

the IntelliSense list to better accommodate the width of this book). IntelliSense for

jQuery works through the extra file — jquery-1.4.1-vsdoc.js — you added to the site.

VWD scans the solution for files ending in vsdoc.js, parses them, and then uses the

documentation it finds in them to build up the IntelliSense list.

Website Development
Lecture 18: Working with JQuery

 ==

8

Figure 2

The reason for the separate documentation file is to keep the size of the original

jQuery library down. Without the documentation, the library is only 70KB; with the

documentation the file size increases to 230KB. You should use the vsdoc file only

for development in VWD and never include a link to it in your pages because it

doesn’t add any value in the browser compared to the real library file. Because of the

large size of the documentation file, you’re wasting valuable bandwidth and time if

you use that file instead of the real library file.

JQuery Core

Most of the jQuery code you write will be executed when the browser is done loading

the page. It’s important to wait with executing your code until the page is done

loading the DOM. The DOM — the document object model — is a hierarchical

representation of your web page and contains a tree-like structure of all your HTML

elements, script files, CSS, images, and so on. The DOM is always in sync with the

page you see in the browser, so if you make a programmatic change to the DOM (for

example, with jQuery code), the change is reflected in the page in the browser. If you

execute your jQuery code too early (for example, at the very top of the page), the

DOM may not have loaded the elements you’re referring to in your script, and you

may get errors. Fortunately, it’s easy to postpone the execution of your code until the

DOM is ready using the ready function in jQuery. You’ve already seen the ready

function at work in the previous Try It Out, but it’s shown here again now that you

better understand what it’s used for:

Website Development
Lecture 18: Working with JQuery

 ==

9

$(document).ready (function () {

// Code added here is executed when the DOM is ready.

});

Any code you add between the opening and closing curly brace is executed when the

page is ready for DOM manipulation. JQuery also comes with a shortcut for the ready

function to make it easier to write code that fires when the DOM is ready. The

following snippet is equivalent to the preceding example:

$(function () {

// Code added here is executed when the DOM is ready.

});

Because jQuery code is often specific to a page, it makes sense to add the code to the

end of just the pages that require it. To make this a little easier, you can add a

ContentPlaceHolder in your master page especially for this purpose. The pages that

use this master page then have an easy location to write jQuery code. You see how to

do this in the next exercise. In the previous jQuery example you saw some code that

selected the MainContent div and the button in your page. However, jQuery comes

with a lot more options to select specific elements in your pages. These options are

discussed next.

Selecting Items Using jQuery

In jQuery you use the dollar sign ($) as a shortcut to find elements in your page. The

elements that are found and returned are referred to as a matched set. The basic syntax

for the $ method is this: $('Selector Here') Between the quotes (you can use single or

double quotes, as long as you use the same type on each end) you enter one or more

selectors, which are discussed later. The $ method returns zero or more elements that

you can then influence using one of the many jQuery methods. For example, to apply

some CSS to all h2 elements, you use the css method:

$('h2').css ('padding-bottom', '10px');

This applies a padding of ten pixels at the bottom of all headings at level two in the

page. The cool thing about many of the jQuery methods is that, besides applying some

design or behavior, they return the matched set again. This enables you to call another

method on the same matched set. This concept is called chaining, where you use the

Website Development
Lecture 18: Working with JQuery

 ==

10

result of one method as the input of another, enabling you to create a chain of effects.

For example, the following code first changes the font size of all level-two headings

in the page, and then fades them out until they are invisible in five seconds:

$('h2').css('font-size', '40px').fadeOut(5000); // timeout is in milliseconds.

Basic Selectors

JQuery selectors enable you to find one or more elements in your page’s document

object model so you can apply all sorts of jQuery methods to these elements. The

great thing about jQuery selectors is that you already know how they work. Rather

than inventing a new technique to find page elements, the designers of jQuery decided

to use an existing selector-based syntax that you are already familiar with: CSS.

Remember the CSS selectors from lecture 5? You can use the exact same ones

in jQuery.

The Universal Selector

Just as its CSS counterpart, the universal selector matches all elements in your page.

To set the fontfamily of each element in your page to Arial, you use this code:

$('*').css('font-family', 'Arial');

The ID Selector

This selector finds and retrieves an element by its id, the same as you would do in

CSS. For example, to set the CSS class for a button called Button1, you use this code:

$('#Button1').addClass('NewClassName');

When this code sets the CSS class (using the addClass method), the standard CSS

rules apply. That means that for this code to work and change the appearance of the

button, the NewClassName class needs to be available to the page, either through an

external CSS file or by an embedded style sheet.

 The Element Selector

 This selector gets a reference to zero or more elements that match a specific tag

name. For example, this code turns the text color of all headings at level two to blue:

$('h2').css('color', 'blue');

The Class Selector

The class selector gets a reference to zero or more elements that match a specific class

name. Consider this HTML fragment:

Website Development
Lecture 18: Working with JQuery

 ==

11

<h1 class="Highlight">Heading 1</h1>

<h2>Heading 2</h2>

<p class="Highlight">First paragraph</p>

<p>Second paragraph</p>

Notice how two of the four elements have a CSS class called Highlight. The

following jQuery code changes the background color of the first heading and the first

paragraph to red, leaving the other elements unmodified:

$('.Highlight').css('background-color', 'red');

Grouped and Combined Selectors

Just as with CSS, you can group and combine selectors. The following grouped

selector changes the text color of all h1 and h2 elements in your page:

$('h1, h2').css('color', 'orange');

With a combined selector, you can find specific elements that fall within some others.

For example, the following jQuery touches just the paragraphs that fall within the

MainContent element, leaving all other paragraphs alone:

$('#MainContent p').css('border', '1px solid red');

To get a feel of the selectors in jQuery and the affects you can apply to the matched

set, the next exercise shows you how to use some of the selectors and apply some

animations to the matched sets.

