
Data
Compression

2019/2020

“Learn why data compression has become crucial as data production

continues to skyrocket.”

Instructor: Dr. Ali Kadhum M. Al-Quraby

College Web Site

Google Classroom

http://staff.uobabylon.edu.iq/lectures.aspx?id=41179

https://classroom.google.com/c/MzcyNDY3MjU4NzBa

Pg. 01

Lecture #1

Introduction

The last decade we have been witnessing a transformation—some call it a

revolution—in the way we communicate, and the process is still under way. This

transformation includes the ever-growing Internet; the explosive development of mobile

communications; and the ever-increasing importance of video communication. Data

compression is one of the enabling technologies for each of these aspects of the

multimedia revolution.

Data compression addresses the problem of reducing the amount of data

required to represent a digital file, so that it can be stored or transmitted so efficiently.

The principle of data compression is that, it compresses data by removing redundancy

from the original data in the source file.

On the other hand, information theory tells us that the amount of information

conveyed by an event relates to its probability of occurrence. An event that is less

likely to occur is said to contain more information than an event that is more likely to

occur. The amount of information of an event and its probability are thus opposite.

Amount of information probability compression probability

It is obvious that information theory is the base theory that data compression relies on.

The problem of representing the source alphabet symbols Si in term of another

system of symbols (usually the binary system consisting of the two symbols 0 & 1) is

the main topic of coding theory.

An optimum coding scheme will use more bits for the symbols that less likely

to occur, and a fewer bits for the symbols that frequently occur.

“Compression is all

about the most compact

representation of data.”

Pg. 02

Lecture #1

Logically speaking, coding theory leads to information theory and information

theory provides the bounds on what can be done by suitable encoding of the information.

Thus, the two theories are intimately related.

Before delivering into the details, we discuss important data compression terms:

Data Compression Terminology

Data Compression

is the process of converting an input data stream (the source stream or the original

raw data) into another data stream (the output, or the compressed, stream) that has a

smaller size. A stream is either a file or a buffer in memory. Data compression is popular

because of two reasons:

1. People like to accumulate data and hate to throw anything away. No matter how

big a storage device one has, sooner or later it is going to overflow. Data compression

seems useful because it delays this inevitability.

2. People hate to wait a long time for data transfers. When sitting at the computer,

waiting for a Web page to come in, or for a file to download, we naturally feel that

anything longer than a few seconds is a long time to wait.

There are many known methods for data compression. They are based on

different ideas, are suitable for different types of data, and produce different results, but

they are all based on the same principle, namely, they compress data by removing

redundancy from the original data in the source file. Any nonrandom collection data has

some structure, and this structure can be exploited to achieve a smaller representation of

the data, a representation where no structure is discernible.

The idea of compression by reducing redundancy suggests the general law of

data compression, which is to "assign short codes to common events (symbols or

phrases) and long codes to rare events." There are many ways to implement this law, and

an analysis of any compression method shows that, deep inside, it works by obeying the

general law.

Pg. 03

Lecture #1

Type of Redundancy

1. Text redundancy:

• In typical English text, for example, the letter E appears very often, while Z is

rare. This is called alphabetic redundancy, and suggests assigning variable-size

codes to the letters, with E getting the shortest code and Z, the longest one.

• Another type of redundancy, contextual redundancy, is illustrated by the fact

that the letter Q is almost always followed by the letter U (i.e., that certain

diagrams and trigrams are more common in plain English than others).

2. Images redundancy: is illustrated by the fact that in a nonrandom image,

adjacent pixels tend to have similar colors. The primary types of redundancy can

be found in image:

• Coding: Coding redundancy occurs when the data used to represent the image

not utilized in an optimal manner. For example, if we have an 8 bits/ pixel image

that allows 256 gray- level value, but the actual image contains only 16 gray-

level values, this is a suboptimal coding, where only 4 bits/pixel are actually

needed.

• Interpixel (Spatial Redundancy): Interpixel redundancy occurs because adjacent

pixels tend to be highly correlated. This is a result of the fact that in most images

the brightness levels do not change rapidly, but change gradually, so that adjacent

pixel values tend to be relatively close to each other in value (for video, or motion

images, this concept can be extended to include interframe redundancy,

redundancy between frames of image data).

• Psychovisual redundancy: refers to the fact that some information is more

important to the human visual system than other types of information. For

example, we can only perceive spatial frequencies below about 50 cycles per

degree so that any higher-frequency information is of little interest to us.

3. Video redundancy: is illustrated by the fact that in a nonrandom video

consecutive frames tend to be similar.

The principle of compressing by removing redundancy also answers the

following question: "Why is it that an already compressed file cannot be compressed

further?" The answer, of course, is that such a file has little or no redundancy, so there

Pg. 04

Lecture #1

is nothing to remove. An example of such a file is random text. When such a file is

compressed, there is no redundancy to remove. If we assume that there was a possibility

to compress an already compressed file, then successive compressions would reduce the

size of the file until it becomes a single byte, or even a single bit. This, of course, is

ridiculous since a single byte cannot contain the information present in an arbitrarily

large file.

Data compression is achieved by reducing redundancy, but this also makes the

data less reliable, more prone to errors. Making data more reliable, on the other hand, is

done by adding check bits and parity bits, a process that increases the size of the codes,

thereby increasing redundancy. Data compression and data reliability are thus opposites.

Before delving into the details, we discuss important data compression terms.

• The compressor or encoder is the program that compresses the raw data in the

input stream and creates an output stream with compressed (low redundancy)

data. The decompressor or decoder converts in the opposite direction.

• The term "stream" is used throughout this lecture instead of "file". "Stream" is a

more general term because the compressed data may be transmitted directly to

the decoder, instead of being written to a file and saved. Also, the data to be

compressed may be downloaded from a network instead of being input from a

file.

• For the original input stream, we use the terms un encoded, raw data. The contents

of the final, compressed, stream is considered the encoded or compressed data.

The term bit stream is also used in the literature to indicate the compressed stream.

Type of Data Compression

• A non-adaptive compression method is rigid and does not modify its operations, its

parameters, or its tables in response to the particular data being compressed. Such a

method is best used to compress data that is all of a single type. Examples are the

Group 3 and Group 4 methods for facsimile compression. They are specifically

designed for facsimile compression and would do a poor job compressing any other

data. In contrast, an adaptive method examines the raw data and modifies its

operations and/or its parameters accordingly. An example is the adaptive Huffman

Pg. 05

Lecture #1

method. Some compression methods use a 2-pass algorithm, where the first pass

reads the input stream to collect statistics on the data to be compressed, and the

second pass does the actual compressing using parameters set by the first pass. Such

a method may be called semi adaptive.

• Lossy / lossless compression: Certain compression methods are lossy. They achieve

better compression by losing some information. When the compressed stream is

decompressed, the result is not identical to the original data stream. Such a method

makes sense especially in compressing images, movies, or sounds. If the loss of data

is small, we may not be able to tell the difference. In contrast, text files, especially

files containing computer programs, may become worthless if even one bit gets

modified. Such files should be compressed only by a lossless compression method,

also special purpose images like medical images, forensic images, NASA images are

compressed using lossless compression methods.

• Symmetrical compression is the case where the compressor and decompressor use

basically the same algorithm but work in "opposite" directions. Such a method makes

sense for general work, where the same number of files are compressed as are

decompressed. In an asymmetric compression method either the compressor or the

decompressor may have to work significantly harder (i.e. each one uses a different

algorithm).

Benefits of Data Compression

The digital representation of the data usually required a very large number of

bits. In many applications, it is important to consider techniques for representing data

with fewer bits, while maintaining an acceptable fidelity of data quality.

The main benefits of data compression are the follows:

1. Reducing the storage requirement or saving the storage space.

2. Potential cost saving associated with sending less data over communication

channels (e.g. the cost of call is usually depending on its duration).

3. Compression can reduce the probability of transmission error occurring since

fewer characters are transmitted when data is compressed.

Pg. 06

Lecture #1

4. By converting the original data that is represented by conventional code into a

different (compressed) code, compression algorithms may provide a level of

security.

5. Reducing the time required for transmission of the total original image by

transmitting its compressed version.

Compression Performance

Most compression methods are physical. They look only at the bits in the input

stream and ignore the meaning of the data items in the input (e.g., the data items may be

words, pixels, or sounds). Such a method translates one bit stream into another, shorter,

one.

The performance of a compression algorithm can be measured by various

criteria. It depends on what is our priority concern. We could measure the relative

complexity of the algorithm, the memory required to implement the algorithm, how fast

the algorithm performs on a given machine, and how closely the reconstruction

resembles the original.

A very logical way of measuring how well a compression algorithm is to

compresses a given set of data and look at the difference in size of the data before the

compression and size of the data after the compression.

There are several ways of measuring the compression effect:

✓ Compression Ratio

This is simply the ratio of size after compression to size before compression.

Values greater than 1 imply an output stream bigger than the input stream (negative

compression). The compression ratio can also be called bpb (bit per bit), The

compression factor is denoted by:

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝑹𝒂𝒕𝒊𝒐 =
𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒕𝒓𝒆𝒂𝒎

𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒏𝒑𝒖𝒕 𝒔𝒕𝒓𝒆𝒂𝒎

✓ Compression Factor

Data compression involve reducing the size of data file, while retaining necessary

information. The reduced file is called the compressed file and is used to reconstruct the

Pg. 07

Lecture #1

original file, resulting in the decompressed file. The original file, before any compression

is performed is called the uncompressed file. The ratio of the original, uncompressed file

and the compressed file is referred to as the compression factor. This is the reverse of

compression ratio. The compression factor is denoted by:

𝑪𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 =
𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒏𝒑𝒖𝒕 𝒔𝒕𝒓𝒆𝒂𝒎

𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒕𝒓𝒆𝒂𝒎

In this case value greater than 1 indicates compression, and values less than 1

imply expansion. This measure seems natural to many people, since the bigger the factor,

the better the compression.

✓ Saving Percentage: This shows the shrinkage as a percentage

𝑺𝒂𝒗𝒊𝒏𝒈 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 =
𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒏𝒑𝒖𝒕 𝒔𝒕𝒓𝒆𝒂𝒎− 𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒖𝒕𝒑𝒖𝒕 𝒔𝒕𝒓𝒆𝒂𝒎

𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒏𝒑𝒖𝒕 𝒔𝒕𝒓𝒆𝒂𝒎
 %

✓ Bit Per Pixel

Another way to state the compression of an image is to use the terminology of

bit per pixel. For an N×N image.

𝑩𝒊𝒕 𝒑𝒆𝒓 𝒑𝒊𝒙𝒆𝒍 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑩𝒊𝒕𝒔(𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒆𝒅 𝒇𝒊𝒍𝒆)

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒊𝒙𝒆𝒍𝒔(𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒇𝒊𝒍𝒆)
=

𝟖×(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑩𝒚𝒕𝒆𝒔)

𝑵×𝑵

Example 1:

The original image is 256 × 256 pixel. Single-band (gray scale) 8 bits per pixel.

This file size is 65,536 bytes (64 k). After compression the image file size is became

6,554 bytes. Compute the compression ratio, the compression factor, the saving

percentage and the Bit per pixel.

𝑪𝑹 =
𝟔𝟓𝟓𝟒

𝟔𝟓𝟓𝟑𝟔
=𝟎.𝟏

A value of 0.1 means that the data occupies 10% of its original size after compression.

𝑪𝑭 =
𝟔𝟓𝟓𝟑𝟔

𝟔𝟓𝟓𝟒
=𝟗.𝟗𝟗 ≈𝟏𝟎

This can also be written as 10:1. This is called "10 to 1 compression" or a "10 times

compression" or it can be stated as "compressing the image to 1/10 its original size".

Pg. 08

Lecture #1

𝑺𝑷 =
𝟔𝟓𝟓𝟑𝟔−𝟔𝟓𝟓𝟒

𝟔𝟓𝟓𝟑𝟔
 × 𝟏𝟎𝟎 = 𝟎.𝟖𝟗𝟗𝟗×𝟏𝟎𝟎 ≈ 𝟗𝟎 %

A value of 90 means that the output stream occupies 10% of its original size (or

that the compression has resulted in savings of 90%).

Using the above example, with a compression factor of 65,536/6,554 bytes, we

want to express this as bits per pixel. This is done by first finding the number of pixels

in the image = 256×256=65,536 pixels. We then find the number of bits in the

compressed image file = (6,554 bytes) (8 bits/bytes) = 52,432 bits. Now we can find the

bits per pixel by taking the ratio

𝑩𝑷𝑷 =
𝟓𝟐𝟒𝟑𝟐

𝟔𝟓𝟓𝟑𝟔
 = 𝟎.𝟖 𝒃𝒊𝒕𝒔/𝒑𝒊𝒙𝒆𝒍

Example 2:

The original image is 256 × 256 pixel. Single-band (gray scale) 8 bits per pixel.

This file size is 65,536 bytes (64 k). After compression the image file size is became

16,384 bytes. Compute the compression ratio, the compression factor, the saving

percentage and the Bit per pixel.

The reduction in the file size is necessary to meet the bandwidth requirement

for many transmission systems, as well as the storage requirement in computer data

bases. The amount of data required for digital images is enormous.

For example, a single 512 × 512, 8-bit image required 2,097,152 bits for storage. If we

wanted to transmit this image over the World Wide Web, it would probably take

minutes for transmission- too long for most people to wait.

Example 3

To transmit an RGB (true color) 512 × 512, 24-bit (8 bit / color) image via

modem at 28.8 kbaud (kilobits/second), it would take about:

𝑻𝒊𝒎𝒆 =
𝑻𝒐𝒕𝒂𝒍 𝒔𝒊𝒛𝒆 𝒐𝒇 𝒇𝒊𝒍𝒆

𝑺𝒑𝒆𝒆𝒅 𝒐𝒇 𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕𝒕𝒆𝒅 𝑫𝒂𝒕𝒂
 =

(𝟓𝟏𝟐 ×𝟓𝟏𝟐 𝒑𝒊𝒙𝒆𝒍) ×(𝟐𝟒 𝒃𝒊𝒕𝒔 𝒑𝒊𝒙𝒆𝒍⁄)

(𝟐𝟖.𝟖 ×𝟏𝟎𝟐𝟒 𝒃𝒊𝒕𝒔 𝒔𝒆𝒄𝒐𝒏𝒅⁄)
 =𝟐𝟏𝟑 𝒔𝒆𝒄𝒐𝒏𝒅𝒔=𝟑.𝟔 𝑴𝒊𝒏𝒖𝒕𝒆𝒔

Pg. 09

Lecture #1

Example 4

A colored video clip of 4 second duration with a frame size of 160×120 pixels

and a frame rate of 30 frames per second, is to be transmitted via modem at 28.8

kbaud (kilobits/second), it would take about:

𝑻𝒊𝒎𝒆 =
(𝟏𝟔𝟎 ×𝟏𝟐𝟎 𝒑𝒊𝒙𝒆𝒍) × (𝟐𝟒 𝒃𝒊𝒕𝒔 𝒑𝒊𝒙𝒆𝒍⁄) ×(𝟒 𝒔𝒆𝒄𝒐𝒏𝒅𝒔)×(𝟑𝟎 𝒇𝒓𝒂𝒎𝒆 𝒔𝒆𝒄𝒐𝒏𝒅⁄)

(𝟐𝟖.𝟖 ×𝟏𝟎𝟐𝟒 𝒃𝒊𝒕𝒔 𝒔𝒆𝒄𝒐𝒏𝒅⁄)
 =𝟏𝟖𝟕𝟓 𝒔𝒆𝒄𝒐𝒏𝒅𝒔=𝟑𝟏.𝟐𝟓 𝑴𝒊𝒏𝒖𝒕𝒆𝒔

The above results show the necessity of data compression especially

in images and movies transmission.

