Lecture 6 Linear programming : Artificial variable technique : Big - M method

6.1 <u>Computational Procedure of Big – M Method (Charne's Penalty Method)</u>

Step 1 – Express the problem in the standard form.

Step 2 – Add non-negative artificial variable to the left side of each of the equations corresponding to the constraints of the type ' \geq ' or '='.

When artificial variables are added, it causes violation of the corresponding constraints. This difficulty is removed by introducing a condition which ensures that artificial variables will be zero in the final solution (provided the solution of the problem exists).

On the other hand, if the problem does not have a solution, at least one of the artificial variables will appear in the final solution with positive value. This is achieved by assigning a very **large price** (**per unit penalty**) to these variables in the objective function. Such large price will be designated by -M for maximization problems (+M for minimizing problem), where M > 0.

Step 3 – In the last, use the artificial variables for the starting solution and proceed with the usual simplex routine until the optimal solution is obtained.

6.2 Worked Examples

```
Example 1

Max Z = -2x_1 - x_2

Subject to

3x_1 + x_2 = 3

4x_1 + 3x_2 \ge 6

x_1 + 2x_2 \le 4

and x_1 \ge 0, x_2 \ge 0
```

Solution

 $\begin{array}{l} \text{SLPP} \\ \text{Max } Z = -2x_1 - x_2 + 0s_1 + 0s_2 - M \ a_1 - M \ a_2 \\ \text{Subject to} \\ & 3x_1 + x_2 + a_1 = 3 \\ & 4x_1 + 3x_2 - s_1 + a_2 = 6 \\ & x_1 + 2x_2 + s_2 = 4 \\ & x_1, \ x_2, \ s_1, \ s_2, \ a_1, \ a_2 \geq 0 \end{array}$

		$C_j \rightarrow$	-2	-1	0	0	-M	-M	
Basic Variables	C _B	X _B	\mathbf{X}_1	X_2	S_1	S_2	A_1	A_2	Min ratio X _B /X _k
a_1	-M	3	3	1	0	0	1	0	$3/3 = 1 \rightarrow$
a ₂	-M	6	4	3	-1	0	0	1	6 / 4 =1.5
s ₂	0	4	1	2	0	1	0	0	4 / 1 = 4
			1						
	Z =	-9M	2 - 7M	1-4M	Μ	0	0	0	$\leftarrow \Delta_j$
X1	-2	1	1	1/3	0	0	Х	0	1/1/3 =3
a ₂	-M	2	0	5/3	-1	0	Х	1	6/5/3 =1.2→
s ₂	0	3	0	5/3	0	1	Х	0	4/5/3=1.8
	Z = -2	2 – 2M	0	$\frac{\uparrow}{\frac{(-5M+1)}{3}}$	0	0	Х	0	←∆j
X 1	-2	3/5	1	0	1/5	0	Х	Х	
x ₂	-1	6/5	0	1	-3/5	0	Х	Х	
\$2	0	1	0	0	1	1	Х	Х	
	Z =	-12/5	0	0	1/5	0	Х	Х	

Since all $\Delta_j \ge 0$, optimal basic feasible solution is obtained

Therefore the solution is Max Z = -12/5, $x_1 = 3/5$, $x_2 = 6/5$

Example 2

 $\begin{array}{l} Max \ \overline{Z} = 3x_1 - x_2 \\ \text{Subject to} \\ 2x_1 + x_2 \geq 2 \\ x_1 + 3x_2 \leq 3 \\ x_2 \leq 4 \\ \text{and} \ x_1 \geq 0, \, x_2 \geq 0 \end{array}$

Solution

 $\begin{array}{l} \text{SLPP} \\ \text{Max } Z = 3x_1 \text{ - } x_2 + 0s_1 + 0s_2 + 0s_3 \text{ - } M a_1 \\ \text{Subject to} \\ & 2x_1 + x_2 - s_1 \text{ + } a_1 \text{ = } 2 \\ & x_1 + 3x_2 + s_2 \text{ = } 3 \\ & x_2 + s_3 \text{ = } 4 \\ & x_1, x_2, s_1, s_2, s_3, a_1 \text{ \ge } 0 \end{array}$

		$C_j \rightarrow$	3	-1	0	0	0	-M	
Basic Variables	C _B	X_B	\mathbf{X}_1	\mathbf{X}_2	\mathbf{S}_1	S_2	S ₃	A_1	Min ratio X _B /X _k
a ₁	-M	2	2	1	-1	0	0	1	$2/2 = 1 \rightarrow$
s ₂	0	3	1	3	0	1	0	0	3 / 1 = 3
S ₃	0	4	0	1	0	0	1	0	-
			1						
	Z =	-2M	-2M-3	-M+1	Μ	0	0	0	$\leftarrow \Delta_j$
x ₁	3	1	1	1/2	-1/2	0	0	Х	-
S ₂	0	2	0	5/2	1/2	1	0	Х	$2/1/2 = 4 \rightarrow$
S ₃	0	4	0	1	0	0	1	Х	-
					1				
	Z	= 3	0	5/2	-3/2	0	0	Х	$\leftarrow \Delta_j$
x ₁	3	3	1	3	0	1/2	0	Х	
s ₁	0	4	0	5	1	2	0	Х	
S ₃	0	4	0	1	0	0	1	Х	
	Z	= 9	0	10	0	3/2	0	Х	

Since all $\Delta_j\!\geq\!0,$ optimal basic feasible solution is obtained

Therefore the solution is Max Z = 9, $x_1 = 3$, $x_2 = 0$

Example 3 Max $Z = 3x_1 + 2x_2 + x_3$ Subject to $2x_1 + x_2 + x_3 = 12$ $3x_1 + 4x_2 = 11$ and x_1 is unrestricted $x_2 \ge 0, x_3 \ge 0$ Solution

SLPP

 $\begin{array}{l} Max \ Z = 3(x_1 - x_1) + 2x_2 + x_3 - M \ a_1 - M \ a_2 \\ Subject \ to \\ 2(x_1 - x_1) + x_2 + x_3 + a_1 = 12 \\ 3(x_1 - x_1) + 4x_2 + a_2 = 11 \\ x_1, \ x_1, \ x_2, \ x_3, \ a_1, \ a_2 \ge 0 \end{array}$

 $\begin{array}{l} Max \; Z = 3x_1 & - 3x_1 & + 2x_2 + x_3 - M \; a_1 - M \; a_2 \\ Subject \; to \\ & 2x_1 & - 2x_1 & + x_2 + x_3 + a_1 = 12 \\ & 3x_1 & - 3x_1 & + 4x_2 + a_2 = 11 \\ & x_1, \; x_1, \; x_2, \; x_3, \; a_1, \; a_2 \geq 0 \end{array}$

		$C_j \rightarrow$	3	-3	2	1	-M	-M	
Basic Variables	C _B	X _B	\mathbf{X}_{1}	$\mathbf{X}_1^{"}$	X_2	X ₃	A_1	A_2	Min ratio X _B /X _k
a_1	-M	12	2	-2	1	1	1	0	12/2 = 6
a_2	-M	11	3	-3	4	0	0	1	11/3 =3.6→
			↑						
	Z=	-23M	-5M-3	5M+3	-5M-2	-M-1	0	0	$\leftarrow \Delta_j$
a1	-M	14/3	0	0	-5/3	1	1	Х	$14/3/1 = 14/3 \rightarrow$
X ₁	3	11/3	1	-1	4/3	$\overline{0}$	0	Х	-
	Z = -1	4M+11				1			
		3	0	-6	5/3M+1	-M-1	0	Х	←∆j
X3	1	14/3	0	0	-5/3	1	Х	Х	
X ₁	3	11/3	1	-1	4/3	0	Х	Х	
	Z = 47/3		0	0	1/3	0	Х	Х	

Since all $\Delta_j \ge 0$, optimal basic feasible solution is obtained

$$x_1 = 11/3, x_1 = 0$$

 $x_1 = x_1 - x_1 = 11/3 - 0 = 11/3$

Therefore the solution is Max Z = 47/3, $x_1 = 11/3$, $x_2 = 0$, $x_3 = 14/3$