
OOP-Lecture 6 2013

 1 Lecturer: Hawraa Sh.

Java Methods:

A Java method is a collection of statements that are grouped together to perform an
operation. When you call the System.out.println method, for example, the system
actually executes several statements in order to display a message on the console.
Now you will learn how to create your own methods with or without return values,
invoke a method with or without parameters, overload methods using the same
names, and apply method abstraction in the program design.

Creating a Method:
In general, a method has the following syntax:

modifier returnValueType methodName(list of parameters){

// Method body;

}

A method definition consists of a method header and a method body. Here are all the
parts of a method:

 Modifiers: The modifier, which is optional, tells the compiler how to call the
method. This defines the access type of the method.

 Return Type: A method may return a value. The returnValueType is the data
type of the value the method returns. Some methods perform the desired
operations without returning a value. In this case, the returnValueType is the
keyword void.

 Method Name: This is the actual name of the method. The method name and
the parameter list together constitute the method signature.

 Parameters: A parameter is like a placeholder. When a method is invoked, you
pass a value to the parameter. This value is referred to as actual parameter or
argument. The parameter list refers to the type, order, and number of the
parameters of a method. Parameters are optional; that is, a method may
contain no parameters.

 Method Body: The method body contains a collection of statements that
define what the method does.

OOP-Lecture 6 2013

 2 Lecturer: Hawraa Sh.

Note: In certain other languages, methods are referred to as procedures and
functions. A method with a nonvoid return value type is called a function; a method
with a void return value type is called a procedure.

Example:
Here is the source code of the above defined method called max(). This method takes
two parameters num1 and num2 and returns the maximum between the two:

/** Return the max between two numbers */

Public static int max(int num1,int num2){

 int result;

 if(num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Calling a Method:
 In creating a method, you give a definition of what the method is to do. To use a
method, you have to call or invoke it. There are two ways to call a method; the
choice is based on whether the method returns a value or not.
When a program calls a method, program control is transferred to the called method.
A called method returns control to the caller when its return statement is executed
or when its method-ending closing brace is reached.
If the method returns a value, a call to the method is usually treated as a value.
For example:

int larger = max(30,40);

OOP-Lecture 6 2013

 3 Lecturer: Hawraa Sh.

If the method returns void, a call to the method must be a statement. For example,
the method println returns void. The following call is a statement:

System.out.println("Welcome to Java!");

Example:
Following is the example to demonstrate how to define a method and how to call it:

publicclassTestMax{

/** Main method */

Public static void main(String[] args){

 int i =5;

 int j =2;

 int k = max(i, j);

 System.out.println("The maximum between "+ i + " and "+ j +" is "+

k);

 }

/** Return the max between two numbers */

Public static int max(int num1,int num2){

 int result;

 if(num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

 }

}

This would produce the following result:

The maximum between 5 and 2 is 5

This program contains the main method and the max method. The main method is
just like any other method except that it is invoked by the JVM.
The main method's header is always the same, like the one in this example, with the
modifiers public and static, return value type void, method name main, and a
parameter of the String[] type. String[] indicates that the parameter is an array of
String.

OOP-Lecture 6 2013

 4 Lecturer: Hawraa Sh.

The void Keyword:

This section shows how to declare and invoke a void method. Following example
gives a program that declares a method named printGrade and invokes it to print the
grade for a given score.

Example:
Public class TestVoidMethod{

Public static void main(String[] args){

 printGrade(78.5);

}

Public static void printGrade(double score){

 if(score >=90.0){

 System.out.println('A');

 }

 Else if(score >=80.0){

 System.out.println('B');

 }

 Else if(score >=70.0){

 System.out.println('C');

 }

 Else if(score >=60.0){

 System.out.println('D');

 }

 else{

 System.out.println('F');

 }

 }

}

This would produce the following result:
C

 Here the printGrade method is a void method. It does not return any value. A call to

a void method must be a statement. So, it is invoked as a statement in line 3 in the

main method. This statement is like any Java statement terminated with a semicolon.

Passing Parameters by Values:

 When calling a method, you need to provide arguments, which must be given in
the same order as their respective parameters in the method specification. This is
known as parameter order association.
For example, the following method prints a message n times:

OOP-Lecture 6 2013

 5 Lecturer: Hawraa Sh.

Public static void nPrintln(String message,int n){

 for(int i =0; i < n; i++)

 System.out.println(message);

}

 Here, you can use nPrintln("Hello", 3) to print "Hello" three times. The
nPrintln("Hello", 3) statement passes the actual string parameter, "Hello", to the
parameter, message; passes 3 to n; and prints "Hello" three times. However, the
statement nPrintln(3, "Hello") would be wrong.
When you invoke a method with a parameter, the value of the argument is passed to
the parameter. This is referred to as pass-by-value. If the argument is a variable
rather than a literal value, the value of the variable is passed to the parameter. The
variable is not affected, regardless of the changes made to the parameter inside the
method.
For simplicity, Java programmers often say passing an argument x to a parameter y,

which actually means passing the value of x to y.

Example:
Following is a program that demonstrates the effect of passing by value. The program
creates a method for swapping two variables. The swap method is invoked by passing
two arguments. Interestingly, the values of the arguments are not changed after the
method is invoked.
publicclassTestPassByValue{

public static void main(String[] args){

 int num1 =1;

 int num2 =2;

 System.out.println("Before swap method, num1 is "+ num1 +" and

num2 is "+ num2);

// Invoke the swap method

swap(num1, num2);

System.out.println("After swap method, num1 is "+

num1 +" and num2 is "+ num2);

}

/** Method to swap two variables */

Public static void swap(int n1,int n2){

 System.out.println("\tInside the swap method");

 System.out.println("\t\tBefore swapping n1 is "+ n1 +" n2 is "+

n2);

// Swap n1 with n2

int temp = n1;

n1 = n2;

n2 = temp;

System.out.println("\t\tAfter swapping n1 is "+ n1 +" n2 is "+ n2);

} }

OOP-Lecture 6 2013

 6 Lecturer: Hawraa Sh.

This would produce the following result:
Before swap method, num1 is1and num2 is2

Inside the swap method

Before swapping n1 is1 n2 is2

After swapping n1 is2 n2 is1

After swap method, num1 is1and num2 is2

Overloading Methods:
 The max method that was used earlier works only with the int data type. But what
if you need to find which of two floating-point numbers has the maximum value? The
solution is to create another method with the same name but different parameters,
as shown in the following code:

Public static double max(double num1,double num2){

 if(num1 > num2)

 return num1;

 else

 return num2;

}

If you call max with int parameters, the max method that expects int parameters will
be invoked; if you call max with double parameters, the max method that expects
double parameters will be invoked. This is referred to as method overloading; that is,
two methods have the same name but different parameter lists within one class.
The Java compiler determines which method is used based on the method signature.
Overloading methods can make programs clearer and more readable. Methods that
perform closely related tasks should be given the same name.
Overloaded methods must have different parameter lists. You cannot overload
methods based on different modifiers or return types. Sometimes there are two or
more possible matches for an invocation of a method due to similar method
signature, so the compiler cannot determine the most specific match. This is referred
to as ambiguous invocation.

The Scope of Variables:
 The scope of a variable is the part of the program where the variable can be
referenced. A variable defined inside a method is referred to as a local variable.
The scope of a local variable starts from its declaration and continues to the end of
the block that contains the variable. A local variable must be declared before it can
be used.
A parameter is actually a local variable. The scope of a method parameter covers the
entire method.
A variable declared in the initial action part of a for loop header has its scope in the

entire loop. But a variable declared inside a for loop body has its scope limited in the

OOP-Lecture 6 2013

 7 Lecturer: Hawraa Sh.

loop body from its declaration to the end of the block that contains the variable as

shown below:

You can declare a local variable with the same name multiple times in different non-

nesting blocks in a method, but you cannot declare a local variable twice in nested

blocks.

