

Programming Fundamentals
Dr. Raaid Alubady –4th Lecture

1. Introduction

As the involvement of computer, automation and robotics growing in our daily life,

programming becomes highly required to control all of them. To control all of these

systems and machines and take desired output by them skilled programming languages is

necessary. However, the area of programming language becomes how much wide but it

will be under one of the two categories of programming languages (i.e., Low-level

language and High-level language). In the early days of computing, language design was

heavily influenced by the decision to use compiling or interpreting as a mode of execution.

Depending on tools such as compilation and interpretation in order to get our written code

into a form that the computer can execute. Code can either be executed natively through

the operating system after it is converted to machine code (via compilation) or can be

evaluated line by line through another program which handles executing the code instead

of the operating system itself (via interpretation).

2. Classification of Programming Languages

Programming languages are basically classified into two main categories – Low-

level language and High-level language. Every programming language belongs to one of

these categories and sub-category.

2.1. Low level languages

Low-level languages are used to write programs that relate to the specific architecture and

hardware of a particular type of computer. They are closer to the native language of a

computer (binary), making them harder for programmers to understand. Programs

written in low-level languages are fast and memory efficient. However, it is nightmare

Programming Languages: Classification,

Execution Model, and Errors

4th Lecture

Programming Fundamentals
Dr. Raaid Alubady –4th Lecture

for programmers to write, debug and maintain low-level programs. They are mostly used

to develop operating systems, device drivers, databases and applications that require direct

hardware access. Low level languages are further classified in two more categories –

Machine language and Assembly language.

 Machine language: Machine language is closest language to the hardware. It

consists set of instructions that are executed directly by the computer. These

instructions are a sequence of binary bits. Each instruction performs a very specific

and small task. Instructions written in machine language are machine dependent and

varies from computer to computer.

 Assembly language: Assembly language is an improvement over machine language.

Similar to machine language, assembly language also interacts directly with the

hardware. Instead of using a raw binary sequence to represent an instruction set,

assembly language uses mnemonics. Assembly language uses a special program

called assembler. The assembler translates mnemonics to specific machine code.

Advantages of low-level languages

 Programs developed using low-level languages are fast and memory efficient.

 Programmers can utilize processor and memory in a better way using a low-level

language.

 There is no need of any compiler or interpreters to translate the source to machine

code. Thus, cuts the compilation and interpretation time.

 Low-level languages provide direct manipulation of computer registers and storage.

 It can directly communicate with hardware devices.

Disadvantages of low-level languages

 Programs developed using low-level languages are machine dependent and are not

portable.

 It is difficult to develop, debug and maintain.

 Low-level programs are more error-prone.

 Low-level programming usually results in poor programming productivity.

 A programmer must have additional knowledge of the computer architecture of a

particular machine, for programming in the low-level language.

Programming Fundamentals
Dr. Raaid Alubady –4th Lecture

2.2. High level languages

High-level languages are similar to the human language. high-level languages are

programmers friendly, easy to code, debug and maintain. it provides a higher level of

abstraction from machine language. They do not interact directly with the hardware.

Rather, they focus more on the complex arithmetic operations, optimal program efficiency

and easiness in coding. Programs in a high-level language are written using English

statements (such as Python, Java, C++, etc). High-level programs require

compilers/interpreters to translate source code to machine language. We can compile the

source code written in the high-level language to multiple machine languages. Thus, they

are machine independent language. High-level languages are grouped into two categories

based on the execution model – compiled or interpreted languages.

We can also classify high-level language several other categories based on the

programming paradigm.

Structured programming (sometimes known as modular programming) is a

programming paradigm aimed at improving the clarity, quality, and development time of

a computer program by making extensive use of the structured control flow constructs of

selection (if/then/else) and repetition (while and for), block structures, and subroutines.

Hence, making it more efficient and easier to understand and modify. Structured

programming frequently employs a top-down design model, in which developers map out

the overall program structure into separate subsections. Note, it is possible to do structured

programming in any programming language.

Procedural programming is a programming paradigm, derived from structured

programming, based upon the concept of the procedure call. Procedures, also known as

routines, subroutines, or functions, simply contain a series of computational steps to be

carried out. Any given procedure might be called at any point during a program's execution,

including by other procedures or itself.

Object-oriented programming is a programming paradigm based on the concept of

"objects", which may contain data, in the form of fields, often known as attributes; and

Programming Fundamentals
Dr. Raaid Alubady –4th Lecture

code, in the form of procedures, often known as methods. A feature of objects is that an

object's procedures can access and often modify the data fields of the object with which

they are associated. Thus, programmers define not only the data type of a data structure but

also the types of operations (functions) that can be applied to the data structure. In this way,

the data structure becomes an object that includes both data and functions. In addition,

programmers can create relationships between one object and another.

Advantages of High-level language

 High-level languages are programmer friendly. They are easy to write, debug and

maintain.

 It provide higher level of abstraction from machine languages.

 It is machine independent language.

 Easy to learn.

 Less error-prone, easy to find and debug errors.

 High-level programming results in better programming productivity.

Disadvantages of High-level language

 It takes additional translation times to translate the source to machine code.

 High-level programs are comparatively slower than low-level programs.

 Compared to low-level programs, they are generally less memory efficient.

 Cannot communicate directly with the hardware.

2.3. Differences between low level and high level programming language

 Low level language High level language

1 They are faster than high level language. They are comparatively slower.

2 Low level languages are memory efficient. High level languages are not memory efficient.

3 Low level languages are difficult to learn. High level languages are easy to learn.

4 Programming in low level requires

additional knowledge of the computer

architecture.

Programming in high level do not require any

additional knowledge of the computer

architecture.

5 They are machine dependent and are not

portable.

They are machine independent and portable.

6 They provide less or no abstraction from the

hardware.

They provide high abstraction from the

hardware.

Programming Fundamentals
Dr. Raaid Alubady –4th Lecture

7 They are more error prone. They are less error prone.

8 Debugging and maintenance is difficult. Debugging and maintenance is comparatively

easier.

9 They are generally used for developing

system software’s (Operating systems) and

embedded applications.

They are used to develop a variety of

applications such as – desktop applications,

websites, mobile software’s etc.

3. Interpreted and Compiled Languages

During the write of a program, you might need to decide whether to use a compiled

language or an interpreted language for the program source code. Both types of languages

have their strengths and weaknesses. Usually, the decision to use an interpreted language

is based on time restrictions on development or for ease of future changes to the program.

The terms interpreted language and compiled language are not well defined because, in

theory, any programming language can be either interpreted or compiled. In modern

programming language implementation, it is increasingly popular for a platform to provide

both options.

3.1. Interpreted language

An interpreted language is a type of programming language for which most of its

implementations execute instructions directly and freely, without previously compiling a

program into machine-language instructions. The interpreter executes the program

directly, translating each statement into a sequence of one or more subroutines, and then

into another language (often machine code). Examples of some common interpreted

languages include Ruby, JavaScript, and Python.

Interpreters take as input the abstract representation of the input program (in the source

language), and evaluate it with relation to additional input data. The output of the

interpreter is the output produced by the program being executed.

Advantages of Interpreted language

 easy to learn and use

 minimum programming knowledge or experience

 allows complex tasks to be performed in relatively few steps

Programming Fundamentals
Dr. Raaid Alubady –4th Lecture

 allows simple creation and editing in a variety of text editors

 allows the addition of dynamic and interactive activities to web pages

 edit and running of code is fast.

Disadvantages of Interpreted language

 usually run quite slowly

 limited access to low level and speed optimization code.

 limited commands to run detailed operations on graphics.

3.2. Compiled language

A compiler is a program that converts human-readable code into computer-readable

instructions—a process that only happens once in the lifespan of that code. Initially, it

takes a bit longer because the compiler has to rearrange, optimize, or “compile” object

code first. Examples of purely compiled languages include C, C++ and Go.

A compiler transforms and optimizes a program written at a higher abstraction level (the

source language) into a program written in a lower level of abstraction language (the target

language). The target program is written in a way that it can be executed by a machine, and

whose instructions are of a finer grain and adapted to its internal data structures.

Advantages of Compiled language

 fast execution

 optimised for the target hardware

Disadvantages of Compiled language

 require a compiler

 editing and deploying the code is a lot slower than interpreters.

4. Programming – Errors

Errors are the mistakes or faults in the program that causes our program to behave

unexpectedly and it is no doubt that the well versed and experienced programmers also

makes mistakes. Programming error are generally known as Bugs and the process to

remove bugs from program is called as Debug/Debugging. There are basically three types

of error: Compilation error or Syntax error, Runtime error or exception and Logical error.

Programming Fundamentals
Dr. Raaid Alubady –4th Lecture

4.1. Compilation error

Compilation errors are the most common error occurred due to typing mistakes or if you

don't follow the proper syntax of the specific programming language. These error are

thrown by the compilers and will prevent your program from running. These errors are

most common to beginners. It is also called as Compile time error or Syntax error. These

errors are easy to debug.

 Example: Typing int as Int

4.2. Runtime error

Run Time errors (exception) are generated when the program is running and leads to the

abnormal behavior or termination of the program. The general cause of Run time errors is

because your program is trying to perform an operation that is impossible to carry out.

Example: Dividing any number by zero, Accessing any file

that doesn't exist etc are common examples of such error.

4.3. Logical error

Logical errors will cause your program to perform undesired operations which you didn't

intended your program to perform. These errors occur generally due to improper logic used

in program. These types of errors are difficult to debug.

Example: Multiplying an uninitialized integer value with

some other value will result in undesired output.

<Best Regards>

Dr. Raaid Alubady

