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CPU scheduling 

 CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU 

among processes, the operating system can make the computer more productive. 

 In a single-processor system, only one process can run at a time; any others must wait until 

the CPU is free and can be rescheduled. The objective of multiprogramming is to have some process 

running at all times, to maximize CPU utilization.  

  The idea is relatively simple. A process is executed until it must wait, typically for the 

completion of some I/O request. In a simple computer system, the CPU then just sits idle. All this 

waiting time is wasted; no useful work is accomplished.  

   With multiprogramming, we try to use this time productively. Several processes are kept in 

memory at one time. When one process has to wait, the operating system takes the CPU away from 

that process and gives the CPU to another process. This pattern continues. Every time one process 

has to wait, another process can take over use of the CPU. 

   Scheduling of this kind is a fundamental operating-system function. Almost all computer 

resources are scheduled before use. The CPU is, of course, one of the primary computer resources. 

Thus, its scheduling is central to operating-system design.  

 

CPU–I/O Burst Cycle 

    process execution consists of a cycle of CPU execution and I/O wait. Processes alternate between 

these two states. Process execution begins with a CPU burst That is followed by an I/O burst, 

which is followed by another CPU burst, then another I/O burst, and so on. Eventually, the final CPU 

burst ends with a system request to terminate execution. 

 

Alternating sequence of CPU and I/O bursts. 



Operating Systems I –4'th Stage-Lecture 6                                        Lecturer: Hawraa Shareef 

32 | P a g e 
 

An I/O-bound program typically has many short CPU bursts. A CPU-bound program might have a 

few long CPU bursts. This distribution can be important in the selection of an appropriate CPU-

scheduling algorithm 

CPU Scheduler 

 Whenever the CPU becomes idle, the operating system must select one of the processes in 

the ready queue to be executed. The selection process is carried out by the short-term 

scheduler (or CPU scheduler). 

  The scheduler selects a process from the processes in memory that are ready to execute 

and allocates the CPU to that process. 

 Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue., a ready 

queue can be implemented as a FIFO queue, a priority queue, a tree, or simply an 

unordered linked list. however, all the processes in the ready queue are lined up waiting for 

a chance to run on the CPU.  

 The records in the queues are generally process control blocks (PCBs) of the processes. 

Preemptive Scheduling 

CPU-scheduling decisions may take place under the following four circumstances:   

1. When a process switches from the running state to the waiting state (for example, as the 

result of an I/O request or an invocation of wait for the termination of one of the child processes) 

2. When a process switches from the running state to the ready state (for example, when an 

interrupt occurs) 

3. When a process switches from the waiting state to the ready state (for example, at completion 

of I/O) 

4. When a process terminates 

 

 For situations 1 and 4, there is no choice in terms of scheduling. A new process (if one exists 

in the ready queue) must be selected for execution. There is a choice, however, for situations 

2 and 3. 

 When scheduling takes place only under circumstances 1 and 4, we say 

that the scheduling scheme is nonpreemptive or cooperative; otherwise, it 

is preemptive.  

 Under nonpreemptive scheduling, once the CPU has been allocated to a process, the process 

keeps the CPU until it releases the CPU either by terminating or by switching to the waiting 

state. This scheduling method was used by Microsoft Windows 3.x; Windows 95 introduced 

preemptive scheduling, and all subsequent versions of Windows operating systems have 

used preemptive scheduling.  

 The Mac OS X operating system for the Macintosh also uses preemptive scheduling; 

previous versions of the Macintosh operating system relied on cooperative scheduling. 

 Cooperative scheduling is the only method that can be used on certain hardware platforms, 

because it does not require the special hardware (for example, a timer) needed for preemptive 

scheduling.  
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Dispatcher 
    Another component involved in the CPU-scheduling function is the dispatcher. The dispatcher is 

the module that gives control of the CPU to the process selected by the short-term scheduler. This 

function involves the following: 

 

• Switching context 

• Switching to user mode 

• Jumping to the proper location in the user program to restart that program 

 

     The dispatcher should be as fast as possible, since it is invoked during every process switch. The 

time it takes for the dispatcher to stop one process and start another running is known as the dispatch 

latency. 

 

Scheduling Criteria 

Many criteria have been suggested for comparing CPU-scheduling algorithms. Which characteristics 

are used for comparison can make a substantial difference in which algorithm is judged to be best. 

The criteria include the following: 

 CPU utilization: 

      We want to keep the CPU as busy as possible. Conceptually, CPU utilization can range from 0 

to 100 percent. In a real system, it should range from 40 percent (for a lightly loaded system) to 90 

percent (for a heavily used system). 

 Throughput:  

       If the CPU is busy executing processes, then work is being done. One measure of work is the 

number of processes that are completed per time unit, called throughput. For long processes, this 

rate may be one process per hour; for short transactions, it may be ten processes per second. 

  Turnaround time:  

       From the point of view of a particular process, the important criterion is how long it takes to 

execute that process. The interval from the time of submission of a process to the time of 

completion is the turnaround time. Turnaround time is the sum of the periods spent waiting to get 

into memory, waiting in the ready queue, executing on the CPU, and doing I/O. 

 Waiting time: 

       The CPU-scheduling algorithm does not affect the amount of time during which a process 

executes or does I/O; it affects only the amount of time that a process spends waiting in the ready 

queue. Waiting time is the sum of the periods spent waiting in the ready queue. 

 Response time: 

       In an interactive system, turnaround time may not be the best criterion. Often, a process can 

produce some output fairly early and can continue computing new results while previous results 

are being output to the user. Thus, another measure is the time from the submission of a request 

until the first response is produced. This measure, called response time, is the time it takes to start 

responding, not the time it takes to output the response. The turnaround time is generally limited by 

the speed of the output device. 

 

          It is desirable to maximize CPU utilization and throughput and to minimize turnaround 

time, waiting time, and response time.  
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Scheduling Algorithms 

     CPU scheduling deals with the problem of deciding which of the processes in the ready queue is 

to be allocated the CPU. There are many different CPU-scheduling algorithms.  

First-Come, First-Served Scheduling 

      By far the simplest CPU-scheduling algorithm is the first-come, first-served (FCFS) 

scheduling algorithm. With this scheme, the process that requests the CPU first is allocated the 

CPU first. The implementation of the FCFS policy is easily managed with a FIFO queue. When a 

process enters the ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it 

is allocated to the process at the head of the queue. The running process is then removed from 

the queue. The code for FCFS scheduling is simple to write and understand. On the negative side, the 

average waiting time under the FCFS policy is often quite long. Consider the following set of 

processes that arrive at time 0, with the length of the CPU burst given in milliseconds: 

 

     If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the result 

shown in the following Gantt chart, which is a bar chart that illustrates a particular schedule, 

including the start and finish times of each of the participating processes: 

 

      The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and 27 

milliseconds for process P3. Thus, the average waiting time is (0 + 24 + 27)/3 = 17 milliseconds. If 

the processes arrive in the order P2, P3, P1, however, the results will be as shown in the following 

Gantt chart: 

 

     The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is substantial. 

Thus, the average waiting time under an FCFS policy is generally not minimal and may vary 

substantially if the processes CPU burst times vary greatly. 

Note also that the FCFS scheduling algorithm is nonpreemptive. Once the CPU has been allocated to 

a process, that process keeps the CPU until it releases the CPU, either by terminating or by 

requesting I/O.  
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Shortest-Job-First Scheduling (SJF) 

        

        This algorithm associates with each process the length of the process’s next CPU burst. When 

the CPU is available, it is assigned to the process that has the smallest next CPU burst. If the next 

CPU bursts of two processes are the same, FCFS scheduling is used to break the tie. Note that a more 

appropriate term for this scheduling method would be the shortest-next-CPU-burst algorithm, 

because scheduling depends on the length of the next CPU burst of a process, rather than its total 

length. As an example of SJF scheduling, consider the following set of processes, with the length of 

the CPU burst given in milliseconds:  

 

Using SJF scheduling, we would schedule these processes according to the following Gantt chart: 

 

     The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9 milliseconds 

for process P3, and 0 milliseconds for process P4. Thus, the average waiting time is (3 + 16 + 9 + 

0)/4 = 7 milliseconds. By comparison, if we were using the FCFS scheduling scheme, the average 

waiting time would be 10.25 milliseconds. 

     The SJF scheduling algorithm is provably optimal, in that it gives the minimum average waiting 

time for a given set of processes. Moving a short process before a long one decreases the waiting 

time of the short process more than it increases the waiting time of the long process. Consequently, 

the average waiting time decreases. 

      The SJF algorithm can be either preemptive or nonpreemptive. The choice 

arises when a new process arrives at the ready queue while a previous process is 

still executing. The next CPU burst of the newly arrived process may be shorter than what is left of 

the currently executing process. A preemptive SJF algorithm will preempt the currently executing 

process, whereas a nonpreemptive SJF algorithm will allow the currently running process to finish its 

CPU burst. Preemptive SJF scheduling is sometimes called shortest-remaining-time-first 

scheduling. 

As an example, consider the following four processes, with the length of the CPU burst given in 

milliseconds: 
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     If the processes arrive at the ready queue at the times shown and need the indicated burst times, 

then the resulting preemptive SJF schedule is as depicted in the following Gantt chart: 

 

  Process P1 is started at time 0, since it is the only process in the queue. Process P2 arrives at time 1. 

The remaining time for process P1 (7 milliseconds) is larger than the time required by process P2 (4 

milliseconds), so process P1 is preempted, and process P2 is scheduled. The average waiting time for 

this example is [(10 − 1) + (1 − 1) + (17 − 2) + (5 − 3)]/4 = 26/4 = 6.5 milliseconds. 

Nonpreemptive SJF scheduling would result in an average waiting time of 7.75 milliseconds. 


