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4.1 Fermat’s theorem 
 

Theorem 4.1.1. (Fermat’s theorem). Let p be a prime and suppose that 

p is not divide a. Then a p−1 ≡1 (mod p). 

 

Proof. The first p−1 positive multiples of a  is the integers  

a, 2a, 3a, ..., (p −1)a 

 

None of these numbers is congruent modulo p to any other, nor is any 

congruent to zero. Indeed, if it happened that ra ≡ sa (mod p), 1 ≤r < s ≤   

p −1 then r ≡ s (mod p), which is impossible.  

 

Therefore, the previous set of integers must be congruent modulo p to 

1,2,3,...,p−1. Multiplying all these congruences together results 

 

a ·2 a ·3 a ···(p −1) a ≡ 1·2·3···(p−1) (mod p) 

 

whence a p−1 (p −1)! ≡ (p−1)! (mod p). By canceling (p−1)! from both sides 

of the preceding congruence (since p is not divide (p−1)!), so a p−1 ≡1 (mod 

p), which is Fermat’s theorem. 

 

Corollary 4.1.2. If p is a prime, then a p ≡ a (mod p) for any integer a.  

 

Proof. H.W. 

 

Fermat’s theorem has many applications and solving some problems in 

number theory. For example, how to verify that  
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538 ≡ 4(mod11). 

One can know 510 ≡1 (mod 11) form (Fermat’s theorem) and it can 

compute that as  

 

538 =510·3+8 =(510)3(52)4 ≡13 ·34 ≡81≡ 4 (mod 11). 

 

Another use of Fermat’s theorem is as a tool in testing the primality of a 

given integer n. If it could be shown that the congruence an ≡ a (mod n) 

fails to hold for some choice of a, then n is necessarily composite.  

 

As an example, if n =117 and a =2. Since 2117 can be written as  

 

2117 =27·16+5 =(27)16· 25 and 27 =128≡11 (mod 117),  

 

we have 2117 ≡1116 ·25 ≡(121)8 ·25 ≡48 ·25 ≡221 (mod 117).  But  

221 =(27)3, which leads to 221 ≡113 ≡121·11≡4·11≡44 (mod 117). 

Combining these congruences, we finally obtain  

 

2117 ≡ 44   2 (mod 117), 

 

so that 117 must be composite as 117=13·9. 
 

Lemma 4.1.3. If p and q are distinct primes with ap ≡a (mod q) and aq ≡a 

(mod p), then apq ≡a (mod pq). 

 

Proof. From corollary (4.1.2) tells us that (aq)p ≡aq (mod p), whereas aq ≡a 

(mod p) holds by hypothesis. Combining these congruences, we obtain apq 

≡a (mod p) or, in different terms, p|apq −a. In similar manner, q|apq −a. 

Corollary [If a|c and b|c, with gcd(a,b)=1, then ab|c] now yields pq|apq −a, 

which can be recast as apq ≡a (mod pq). 

 

Example (converse to Fermat’s theorem).  

 2340 ≡1 (mod 341), where 341=11·31. Notice that 210 =1024=31·33+1. 

Thus, 211 =2·210 ≡2·1≡2 (mod 31) and 231 =2(210)3 ≡2·13 ≡2 (mod 11). 

 Exploiting the lemma, 211·31 ≡2 (mod 11·31) or 2341 ≡2 (mod 341). After 

canceling a factor of 2, we get to  

 

2340 ≡1 (mod 341) 

 

so that the converse to Fermat’s theorem is false. 

 

 

Definition 4.1.5. (pseudoprime). A composite integer n is called 
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pseudoprime whenever n|2n −2.  

 

In previous example, 341|2341 −2, although 341=11·31. The smallest four 

being 341, 561, 645, and 1105 and so on.  

 

Definition 4.1.6 (pseudoprime to the base a). A composite integer n for 

which an ≡a (mod n) is called a pseudoprime to the base a.  

 

When a =2, n is simply said to be a pseudoprime. For instance, 91 is the 

smallest pseudoprime to base 3, whereas 217 is the smallest such to base 

5. It has been proved (in 1903) that there are infinitely many pseudoprimes 

to any given base. 

 

The first example of an even pseudoprime, namely, the number 

161038=2·73·1103. 

 

Note that: There exist composite numbers n which are pseudoprimes to 

every base a; that is, a n−1 =1 (mod n) for all integers a with gcd(a,n)=1. 

 

For example, the number 561. Please check that. 

These exceptional numbers are called absolute pseudoprimes or 

Carmichael numbers. 

To see that 561=3·11·17 must be an absolute pseudoprime, notice that  

gcd( a,561)=1 gives gcd(a,3)= gcd(a,11)= gcd(a,17)=1. 

 

An application of Fermat’s theorem leads to the congruences  

 

a2 ≡1 (mod 3) a10 ≡1 (mod 11) a16 ≡1 (mod 17) 

 

and, in turn, to  

 

a560 ≡(a2)280 ≡1 (mod 3) 

a560 ≡(a10)56 ≡1 (mod 11) 

a560 ≡(a16)35 ≡1 (mod 17) 

 

These give rise to the single congruence a560 ≡1(mod 561), where 

gcd(a,561)=1.  

But then a561 ≡a (mod 561) for all a, showing 561 to be an absolute 

pseudoprime. 

 

Theorem 4.1.7 (Wilson). If p is a prime, then (p−1)! ≡ −1 (mod p). 
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Example. A concrete example should explain to clarify the proof of 

Wilson’s theorem.  

Let p =13. It is possible to divide the integers 2,3,...,11 into (p−3)/2=5 

pairs, each product of which is congruent to 1 modulo 13.  

 

To write these congruences out explicitly:  

 

2·7≡1 (mod 13) 

3·9≡1 (mod 13) 

4·10≡1 (mod 13) 

5·8≡1 (mod 13) 

6·11≡1 (mod 13). 

 

Multiplying these congruences gives the result 

 

11!=(2·7)(3·9)(4·10)(5·8)(6·11)≡1 (mod 13) 

and so 

 

12!≡12≡−1 (mod 13). 

 

 Thus, (p−1)!≡−1 (mod p), with p =13. 


