8086 Microprocessor - |

The 80886 is a 16-bit microprocessor. It has a 16-bit data bus with 20-bit address buc.

Figure 1 shows the pin-outs of the microprocessor. It is packaged in 40-pins dual in-line package.
= - €

w

B0B6 PIN DIAGRAM

[MAX Y MIN
[Iﬁunzj MODE
GND EMIJ vee
ADM 2 3sJao1s
AD13[J3 38 JAal6/s3
AD12(04 37 O a1wsa
- B © ADIIOS 36 [JA18/55
‘AD10 6 35 [Al9/s6
. aps[d7. 34 DBAEsST
o : ADEC] e 33 O mnsmx
ADTg9 32ORD
x06 (10 31 DRQ/ETO (HoLD)
ADS[C]11, 30 [JRG/ETY (HLOA)
Ap4]1z 29 JioCK (WR)
7 A03013 22052 (/70)
. A2 14 27 D51 (DT/R)
ADI[] 15 26 D 5o (DEN)
3 ADQC] 15 25 [Jos0 (ALE)
; . - g 24 O as: (INTA}
: : : INTRL] 18 23 O TEST
- ¢ - © cLkO1s 22 D READY
: GNDO] 20 21 CIRESET

Figure 1: 8086 Pin Diagram.

Execution Unit (EU) : Bus Interface Unit (BIU)
AX |Ah |Al - _ I_IP_I
BX Bh Bl : cs 000&: __;_‘_"
X jan o <. ' DS 0000 E
PX jpn_joi |12 SS 0o
2 -

SP) ES 000d

BP @

SI | |

DI [

. Address Generation
and Bus Control Logic c:> 8086 Bus

|

:> CU Instruction Queue
i (FIFO
i FLAGS .)
4 L
f —— 1 Instruction Reg. S |

Figure 2 : The 8086 Architecture.
1

Execution Unit and Bus Interface Unit (8086)

As illustrated in Figure 2, the processor is partitioned into two logical units: ar execution

unit (EU) and 2 bus interface unit (BIU). The role of the EU is to execute instructions, whereas

the BIU delivers instructions and data to the EU. The EU contains an arithmetic and logic unr
(ALU), a conwol unit (CU), and .a number of registers. These features provide for execution of
instructions-and arithmetic and logical operations. . ’
The most important function of the BIU is to mzuiage the bus control unit, segment registers,
and instruction queue. The BIU controls the buses that transfer data to the EU, to memory, and to
external input/output devices, whereas the segment registers control memory addressing.
Another function of the BIU.is to provide access to instructions. Because the instructions
for a program that is executing are in mémory, the BIU must access instructions from memory and
place them in an instruction queue, which varies in size dcpending- on the processor (6 bytes-in the
'8086). This feature enables the BIU to look ahead and prefetch instructions so that there. 1s always a
queue of instructions ready to execute.
The EU and BIU work in parallel (Pipeline Processing), with the BIU keeping one step
ahead. The EU notifies the BIU when it needs access to data in memory or a.tl. /O devi:_:e. Also, the
EU Irequest_s machine instructions from the BIU instruction queue. The top imstruction Is the
currently executable one and, while the EU is occupied executing an instruction, the BIU fetches

another instruction from memory. This fetching overlaps with execution and speeds up processing.

(kT E1 [| E2] ¥ | E3]| F4 |

Non-Pipelined Processing

Y

F4 F5 F6_ | F7 K8
E2 E3 E4 E5 | E6 €7 ..

SIS}
rrf
[

1 '

Pipelined Processing

2

The Programming Model

The programming model of the 8086 is considered to be program visible because its

registers are used during application programming and specified by the MiCrOprocessor instructions.

1. Seament Reecisters

A segment register is 16-bit long and provides for addressing an area of memory known. as the
current segment. Because a segment aligns on a paragraph boundary, its address in.a segment
register assumes 4 0-bits to its right.

CS (Code Segment) register: Contains the starting address of a program's code segment. This
segment address, plus an offset value in the instruction pointer (IP) register,
indicates the address of an instruction to be fetched for execution. For normal
programming purposes, you need not reference the CS register.

DS (Data Segment) register: Contains the starting address of a program's data segment.

| Instructions use this address to locate data: This address, plus an offset value in an
instruction, causes a reference to a specific byte location in the data segment.

SS (Stack Segment) register: Permits the implementation of a stack in memory, which a
program uses for temporary storage of addresses and data. The system stores the
starting address of a program’s stack segment in the SS register. This segment
address, plus an offset value in the stack pointer (SP) register, indicates the
current word in the stack being addressed. For normal programming purposes,
you need not directly reference the SS register. | _

ES (Extra Segment) register: Used by some string (character data) operations to handle

- memory addressing. The ES register is associated with the DI (index) register. A
program that requires the use of the ES may initialize it with an appropriate

segment address.

2. Pointer Registers

The three pointer registers are the IP, SP, and BP.

IP (Instruction- Pointer) register. The 16-bit IP register contains the offset address of the next
s instruction that is to execute. The IP is associated with the CS register in that the

IP indicates the current instruction within the currently executing code segment.
In the following example, the CS register contains 39B4[0]H and the IP contains 0514H. To
find the next instruction to be executed, the processor combines the address in the CS and with

the offset in the IP:

LV

Segment address in CS 39B40H
Plus offset address in [P + 0514H
Address of next instuction - 3A054H

The SP (stack pointer) and BP (base pointer) registers are asso ciated with the SS register and
permit the system fo access data in the stack segment.
SP register: The 16-bit SP register pmwdes an offset value, which whcn assocmted with the
S register, refers to the current word being processed in the stack. The system
automatically handles these registers. ' '
In the following example, the SS register contains segmcnt address 4BB3[0]H and the SP
contains offset 412H. To find the current word being processed in the stack, the processor

combines the address in the SS with the offset in the SP:

Segment address in SS 4BB30H
Plus offset in SP +412H
Address in stack . 4BF42H

BP register: The 16-bit BP facilitates referencing parameters, which are data and addresses
that a program passes via the stack. The processor.combines the address in the SS
with the offset in the BP.

3. General-Purpose Registers

The AX, BX, CX, and DX general-purjﬁose registers are the workhorses _of the system. They
are unique in that you can address them as one word or as a 1-byte portion. The leftmost byte is the
"high" portion and the rightmost bvte is the "low" portion. For example, the AX register consists of

an AH (high) and an AL (low) poruon, and you can reference any portion by its name.

AX register: The AX register, the primary accumulator, is used for operaaons involving
input/output and most arithmetic. For example, the multiply, divide, and translate
instructions assume the use of the AX. Also, some instructions generate more
efficient code if they reference the AX rather than another register.

AX: AH AL
2 -egistar: The BX is known as the base register since it is the only general-purpose register
-haf can be used as an index to extend addreSsing. Another common purpose of
" the BX is for computations. '
BX: BH BL

CX register: The CX is known as the count register. [t may contain a value to contro! the
number of times a loop is repeated or a value to shift bits left or right. The CX
may also be used for many computations.

CX: CH CL |

DX register: The DX is known as the data register. Some input/output operations require its
use, and multiply and divide operations that involve large values assume the use
of the DX and AX together as a pair.

DX: DH DL

4.Index Registers

The SI (Source Index) and DI (Destination Index) registers are available for indexed addressing
and for use in addition and subtraction. |
SI register: The 16-bit source index register is required for some string (charactcr)‘operations.
In this context, the SI is associated with the DS register.
DI register. The 16-bit destination index register is also required for some string operations. In

this context, the DI is associated with the ES register.

5.Flag Reoister :

Nine of the 16 bits of the flag register are used in the 8086 processors. Six of these bits
represent status flags. The Logic State of these status flags indicate conditions that are produced as
a result of executing an instruction, such as ADD, specific flag bits are reset (logic 0) or set

(logic 1) based on the result that is produced. The following summarize the operation of these bits:

+ OF (overflow). It occurs when signed numbers are added or subtracted. An overflow indicates
that the signed result is out of the range. For example, if a 7F (+127) is added to 1,
the result is 80h (-128). This result represents an overflow condition.
For unsigned operations, the overflow flag is ignored.
« SF (sign). Contains the resulting sign of an arithmetic operation (0 =positive and 1 = negative).
« ZF (zero). Indicates the result of an arithmetic or comparison operation (0 = nonzero and
1 = zero result). = #
+ AF (auxiliary carry). Contains a carry out of bit 3 on 8-bit data, for specialized arithmetic.
« PF (parity). Indicates even or odd parity of a low-order (rightmost) 8-bit data operation.
« CF (carry). Contains carries from a high-drder (leftmost) bit following an arithmetic operation,

also contains the contents of the last bit of a shift or rotate operation.

- L]

5

The other three flag bits are conrrol flags. These three flags provide control functions on the 8086
processor as follows: _
- DF (direction). Determines the direction of string operations. When set, the swing instruction

i b

automatically decrements the address. On other hand, resetting DF causes the swing
address to be automatiéally incremented.

« IF (interrupt). Indicates that all external interrupts, such as keyboard entry, are to be processed
or ignored. | |

« TF(trap). Permits operation of the processor in single-step mode. Debugger programs such as
DEBUG set the trap flag so that you can step through execution a single instruction

at a time to examine the effect registers and memory.

The flag register has the following format:

15 14 b T e e U R L i i 0

64 Kbyte

| 64 Kbyte

. 64KDbyte I/O Address Space

FFFFh
SP|
BP

sl
DT ,- \

| |
64 Kbyte l |

|

|

‘ 0000h

x

8086 Software Model

Generation of Memorv Address

A logical address is described by a segment address and an offset address, both the segment o
base and offset are 16-bit Ciuantities. However, the physical addresses that are used to access
memory are 20-bits in length. The generation of the physical address involves combining a 16-bit

offset value and a 16-bit segment base value that is located in one of the segment registers.

[Offset Address |

Logical Address

|
o Segment Adatess | 0000]

1 Adder

[Physical Memory Address |
Physical Address = Segment Value * 10k + Offset Value |

The microprocessor has a set of rules that apply to segments whenever memory is

addressed. These rules define the segment register and offset register combination. For example,

the code segment is always used with the instruction pointer to address the next instruction in

program. This combination is CS:IP, the CS register defines the start of the code segment area and

IP register defines the offset. Table 1 shows the default segment and offset address combinations.

Table 1 8086 default segment and offset combinations.

CS P | Code Address (Instruction)
SS SP or BP | Stack Address ‘
: 5 DS BX.DLSI, or 8 or 16 bit number | Data Address |

“ES | DI for string instructions | String Destination Address J iy
_) 74 K —::
5 il
& a |

Dats-Addressine Modes

Efficient software development for the microprocessor requires a complete familiarity vite
the addressing modes employed by each instruction. Because the MOV instruction is a common

and flexible instruction, it provides a basis for the explanation of data-addressing modes.

MOV AX , BX

~ Destination Source

The MOV instruction defines the dirécﬁon of data flow. The source is to the right and the

destination is to the left, next to the opcode MOV (An opcode, or operation code, tells the

microprocessor which operation to perform). This direction of flow, which is applied to all

instructions, is awkward at first. We naturally assume that things move from left to right; whereas
here they move from right to left. Notice that a comma always separates the destination from the '
source in an instruction. Also, note that memory-to-memory transfers are not allowed by a:ny' |
instruction except for the MOVS instruction. |

The MOV AX, BX instruction transfers the word contents of the source register (BX) into the
destinaticn register (AX). The source never changes, but the destination usually changes. It is
essential to remember that a MOV instruction always copies the source data and into the
destination. Note that the flag register remains unaffected by most data transfer instructions. The |
source and destination are often called operands.

Figure 3 shows all possible variations of the data-addressing modes using the MOV
instruction. This illustration helps to show how each data-addressing mode is formulated with the

MOY instruction and also serves as a reference. The data-addressing modes are as follows:

1. Register Addressing 5|
Transfers a copy of a byte or word from the source register or memozy location to the :
destination register or memory location. (Example: the MOV CX,DX instruction copies the word-

sized contents of register DX into register-CX).

w cmmedings sdaressing o _ . s

Transters the source-immediate byte or word of data into the destination register or memory

location. (Example: the MOV AL, 22H instruction copies a byte-sized 22H into register AL).

3. Direct ' Addressing

Moves a byte or word between a memory location and a register. The instruction set does

not support a memory-to-memory transfer, except for the MOVS instruction. (Example: the

MOV CX,[1000] instruction copies the word-sized contents of memory location of offset 1000 into
register CX).

4. Register Indirect Addressing
Transfers a byte or word between a register and a memory location addressed by an index or
base register. The index and base registers are BP, BX, DI, and SI. (Example: the MOV AX, [BX]

instruction copies &e word-sized data from the data segment offset address indexed by BX into

register AX).

5. Base-plus-Index Addressing

Transfers a byte or word between a register and the memory location addressed by a base
register (BP or BX) plus an index register (DI or SI). (Example: the MOV [BX+DI], CL
instruction copies the byte-sized contents of register CL into the data segment memory location

addressed by BX plus DI).

6. Register Relative Addressing

Moves a byte or word between a register and the memory location addressed by an index or
base register plus a displacement. (Example: MOV AX,[BX+4] or MOV AX,ARRAY[BX]. The
first instruction loads AX from the data segment address formed by BX pius 4. The second

instruction loads AX from the data segment memory location in ARRAY plus the contents of BX).

7.Base Relative-plus-Index Addressing

Transfers a byte or word between a register and the memory location addressed by a base
and an index register plus a displacement. (Example: MOV AX,ARRAY[BX-+DI] or
MOV AX,[BX+DI+4]. These instructions load AX from a data segment memory location. The first
instruction uses an address formed by adding ARRAY, BX, and DI and the second by adding BX,

DI, and 4).

HOOS11
sseippe

Kowsayy

10
Je)s1B80y

HODS0}
§s0IppE
Aowapy

HooEDL
ssalppe
Aloweyy

S . S—

H¥ezh
ssaippe
Kiowapy

HO
Je)s1Bay

Xy
19s16eyy

uopeunsagg

HOOOL = 8Q pue' HOO0L=AVHHY ' HO0Z0 =5
______Ho020 + HOOEO + HOOO} + HODOOY e
i TS tXgt go @l HOoLxsa T J1e15)6ey
b + HOOE0 + HOOOO L HYOEDL |
s + + '3 T T sselppe
¥+ X8+ HolL*8Q boE%E
H0020 + HOOED + HO00D1 ds
= T IstXxdtHolxsg v JopsiBoy
HODEO + HO000} :
< x@tMoixsa =
HYEZ L + HOo0OL XV
e e el 5 ,——e e
dS10 + Ho! X sQ ooy
- o HVE
BlEQ]
im s 322 T Xg
loysiBay
uo[ieiauaK) ssaippy saInog

"Sepoul mc_mmo%cum,m_mc 9608

‘HODED = Xg sajopN

Xa'lis+xg ooan 7 AOW
lv+xal1o Aow

da'lis+xgl AOW

s

10'[xa] Aow
XY'IHPEZL] AOW
HYE'HD AOW

X8'XY AOW

ucpangsuj

xepuj-snid-eajejes eseg

enjejel teis|beyy

xepuj-snjd-eseg

1oapuy Jeysibay

jrer=3ilg]

aje|paw|

o

191516y

adA)

10

	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010

