
Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

1

5.3.2	Shortest-Job-First	Scheduling		

A different approach to CPU scheduling is the shortest-job-first (SJF)

scheduling algorithm. This algorithm associates with each process the length of

the process’s next CPU burst. When the CPU is available, it is assigned to the

process that has the smallest next CPU burst. If the next CPU bursts of two

processes are the same, FCFS scheduling is used to break the tie.

As an example of SJF scheduling, consider the following set of processes, with

the length of the CPU burst given in milliseconds:

Using SJF scheduling, we would schedule these processes according to the

following Gantt chart:

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process

P2, 9 milliseconds for process P3, and 0 milliseconds for process P4. Thus, the

average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if we

were using the FCFS scheduling scheme, the average waiting time would be

10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the minimum

average waiting time for a given set of processes. Moving a short process before

a long one decreases the waiting time of the short process more than it increases

the waiting time of the long process. Consequently, the average waiting time

190 Chapter 5 CPU Scheduling

that has the smallest next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 6
P2 8
P3 7
P4 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

P3 P2P4 P1

241690 3

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process
P2, 9 milliseconds for process P3, and 0 milliseconds for process P4. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. With short-term scheduling, there is no way to
know the length of the next CPU burst. One approach is to try to approximate
SJF scheduling. We may not know the length of the next CPU burst, but we may
be able to predict its value. We expect that the next CPU burst will be similar
in length to the previous ones. By computing an approximation of the length
of the next CPU burst, we can pick the process with the shortest predicted CPU
burst.

190 Chapter 5 CPU Scheduling

that has the smallest next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a more appropriate
term for this scheduling method would be the shortest-next-CPU-burst algorithm,
because scheduling depends on the length of the next CPU burst of a process,
rather than its total length. We use the term SJF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes,
with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 6
P2 8
P3 7
P4 3

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

P3 P2P4 P1

241690 3

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process
P2, 9 milliseconds for process P3, and 0 milliseconds for process P4. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. By comparison, if
we were using the FCFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before a long one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SJF scheduling is used
frequently in long-term scheduling.

Although the SJF algorithm is optimal, it cannot be implemented at the level
of short-term CPU scheduling. With short-term scheduling, there is no way to
know the length of the next CPU burst. One approach is to try to approximate
SJF scheduling. We may not know the length of the next CPU burst, but we may
be able to predict its value. We expect that the next CPU burst will be similar
in length to the previous ones. By computing an approximation of the length
of the next CPU burst, we can pick the process with the shortest predicted CPU
burst.

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

2

decreases.

The real difficulty with the SJF algorithm is knowing the length of the next

CPU request. For long-term (job) scheduling in a batch system, we can use as

the length the process time limit that a user specifies when he submits the job.

Thus, users are motivated to estimate the process time limit accurately, since a

lower value may mean faster response. (Too low a value will cause a time-limit-

exceeded error and require resubmission.) SJF scheduling is used frequently in

long-term scheduling.

Unfortunately, the SJF algorithm cannot be implemented at the level of short-

term CPU scheduling. With short-term scheduling, there is no way to know the

length of the next CPU burst. One approach is to try to approximate SJF

scheduling. We may not know the length of the next CPU burst, but we may be

able to predict its value. We expect that the next CPU burst will be similar in

length to the previous ones. By computing an approximation of the length of the

next CPU burst, we can pick the process with the shortest predicted CPU burst.

The next CPU burst is generally predicted as an exponential average of the

measured lengths of previous CPU bursts. We can define the exponential average

with the following formula. Let tn be the length of the nth CPU burst, and let tn+1

be our predicted value for the next CPU burst. Then, for, 0 ≤ a≤ 1, define

tn+1 = atn +(1− a) n.

The value of tn contains our most recent information; tn stores the past history.

The parameter controls the relative weight of recent and past history in our

prediction. If α = 0, then tn+1 = tn , and recent history has no effect (current

conditions are assumed to be transient). α = 1, then tn+1 = tn, and only the most

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

3

recent CPU burst matters (history is assumed to be old and irrelevant). More

commonly, α = 1/2, so recent history and past history are equally weighted. The

initial 0 can be defined as a constant or as an overall system average. Figure 5.3

shows an exponential average with α = 1/2 and t0 = 10.

To understand the behaviour of the exponential average, we can expand the

formula for tn+1 by substituting for τn, to find

tn+1 = αtn + (1 − α)αtn−1 + ⋯ + (1 − α)jαtn−j + ⋯ + (1 − α)n+1t0. 

Since both α and (1 − α) are less than or equal to 1, each successive term has

less weight than its predecessor.

Figure 5.3 Predicting the length of the next CPU burst.

The SJF algorithm can be either preemptive or nonpreemptive. The choice

arises when a new process arrives at the ready queue while a previous process is

still executing. The next CPU burst of the newly arrived process may be shorter

time than what is left of the currently executing process. A preemptive SJF

algorithm will preempt the currently executing process, whereas a nonpreemptive

SJF algorithm will allow the currently running process to finish its CPU burst.

Preemptive SJF scheduling is sometimes called shortest-remaining-time-first

Operating Systems I- Lecture Lecturer: Dr. Sura Z. Alrashid

4

scheduling.

As an example, consider the following four processes, with the length of the CPU

burst given in milliseconds:

Process

Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

If the processes arrive at the ready queue at the times shown and need the

indicated burst times, then the resulting preemptive SJF schedule is as depicted

in the following Gantt chart:

Process P1 is started at time 0, since it is the only process in the queue. Process

P2 arrives at time 1. The remaining time for process P1 (7 milliseconds) is larger

than the time required by process P2 (4 milliseconds), so process P1 is preempted,

and process P2 is scheduled. The average waiting time for this example is [(10 −

1) + (1 − 1) + (17 − 2) + (5 − 3)]/4 = 26/4 = 6.5 milliseconds. Nonpreemptive SJF

scheduling would result in an average waiting time of 7.75 milliseconds.

226

3

5

If the processes arrive at the ready queue at the times shown and need the indicated
burst times, then the resulting preemptive SJF schedule is as depicted in the
following Gantt chart:

Process P1 is started at time 0, since it is the only process in the queue. Process P2

arrives at time 1. The remaining time for process P2 (7 milliseconds) is larger than
the time required by process P2 (4 milliseconds), so process P1 is preempted, and
process P2 is scheduled. The average waiting time for this example is ((10 − 1) + (1
− 1) + (17 − 2) + (5 − 3))/4 = 26/4 = 6.5 milliseconds. Nonpreemptive SJF

scheduling would result in an average waiting time of 7.75 milliseconds.

6.3.3 Priority Scheduling

The SJF algorithm is a special case of the general priority scheduling algorithm. A
priority is associated with each process, and the CPU is allocated to the process with
the highest priority. Equal-priority processes are scheduled in FCFS order. An SJF

algorithm is simply a priority algorithm where the priority (p) is the inverse of the
(predicted) next CPU burst. The larger the CPU burst, the lower the priority, and vice
versa.

Note that we discuss scheduling in terms of high priority and low priority. Priorities
are generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to 4095.
However, there is no general agreement on whether 0 is the highest or lowest
priority. Some systems use low numbers to represent low priority; others use low
numbers for high priority. This difference can lead to confusion. In this text, we
assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have arrived at
time 0, in the order P1, P2, ⋯, P5, with the length of the CPU-burst time given in
milliseconds:

Process

Burst Time

