2-3-1 The lever rule:

The relative amounts of the two phases present in the two-phase area can be determined by use of a lever relation.

Lever rule: the fractional amounts of two phases are inversely proportional to their distances along the tie line (isotherm) from the bulk composition axis.

For example, Point X_2 in fig.(10) is the fulcrum of a lever. One lever arm is A_2X_2 , the distance from point A_2 to point X_2 . The other lever arm is X_2M_2 . The relative amount of crystals A is given by the lever arm X_2M_2 divided by the sum of the lever arms, A_2M_2 . Thus, the percentage of phases at point X_2 is given by:

% of crystals $\mathbf{A} = \frac{X2M2}{A2M2} \times 100 = \frac{C_{M2} - C_X}{C_{M2}} \times 100 = \frac{45 - 30}{45} \times 100 = \frac{15}{45} \times 100 = 33\%$ % of melt $= \frac{A2X2}{A2M2} \times 100 = \frac{C_X}{C_{M2}} \times 100 = \frac{30}{45} \times 100 = 67\%$

The composition of the melt at point M₂ is 45% B and 55% A.

Fig.(10) Hypothetical phase diagram to explain the lever rule

The calculations on a cooling melt at point X with composition (70% A + 30% B) in fig.(11) are explained in table (1), isoplethal study.

Fig.(11) Hypothetical phase diagram for binary system.

Table (1) Isoplethal study at point X with composition (70% A + 30% B).

Temp (°C)	Proportions (phases)	% (Phases)	% Composition of phases (in terms of components)
<i>T</i> ₁	30 units melt	100	$\begin{cases} \mathbf{A} = 70\\ \mathbf{B} = 30 \end{cases}$
	€ units crystals (A)	ε†	A = 100
<i>T</i> ₂	30 units melt	67	$\begin{cases} A = 55 \\ B = 45 \end{cases}$
	15 units crystals (A)	33	A = 100
	45		(A - 27.5)
<i>T</i> ₃	30 units melt	48	B = 62.5
	32.5 units crystals (A)	52	A = 100
	62.5		() 00
Τ₄	30 units melt	43	A = 30 B = 70
	40 units crystals (A)	57	A = 100
	70		
	Melt solidifies to form (eutectic micros	structure
<i>T</i> ₄	30 units eutectic xtals	43	A = 30
	40 units crystals (A)	57	A = 100
	70		

2-3-2 The Binary Eutectic :

The **eutectic reaction** is an isothermal three-phase reaction in which a liquid is in equilibrium with two crystalline phases.

Melt
$$C_E(L) \stackrel{\text{cooling}}{\iff} \text{crystals } A + \text{crystals } B$$

This reaction involving a liquid changing to two crystalline phases at the eutectic point which is **point E**. The eutectic point E, which formed by the intersection of the two liquidus lines, represents the composition of the lowest melting mixture in this system. As shown in fig.(12). If a microscope were arranged so as to view melt X at the various stages of crystallization at cooling, the phases might appear as shown schematically in fig.(13).

