
EXAMPLE 1 Show that the equation

has exactly one real solution.

x3
+ 3x + 1 = 0

THEOREM 3—Rolle’s Theorem Suppose that is continuous at every
point of the closed interval [a, b] and differentiable at every point of its interior
(a, b). If then there is at least one number c in (a, b) at which
ƒ¿scd = 0.

ƒsad = ƒsbd,

y = ƒsxd

The Mean Value Theorem
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Rolle’s Theorem

Solution We define the continuous function

Since and , the Intermediate Value Theorem tells us that the graph
of ƒ crosses the x-axis somewhere in the open interval . (See Figure 1.) The
derivative

is never zero (because it is always positive). Now, if there were even two points and
  where ƒ(x) was zero, Rolle’s Theorem would guarantee the existence of a point                   

ƒ¿x = c
x = b

x = a

ƒ¿sxd = 3x2
+ 3

(-1, 0)
ƒ(0) = 1ƒ(-1) = -3

ƒsxd = x3
+ 3x + 1.

in between them where was zero. Therefore, ƒ has no more than one zero.

The Mean Value Theorem

x

y

0 1

(1, 5)

1

(–1, –3)

–1

y � x3 � 3x � 1

FIGURE 1 The only real zero of the
polynomial is the one
shown here where the curve crosses the 
x-axis between and 0 .-1

y = x3
+ 3x + 1

THEOREM 4—The Mean Value Theorem Suppose is continuous on a
closed interval [a, b] and differentiable on the interval’s interior (a, b). Then there
is at least one point c in (a, b) at which

(1)
ƒsbd - ƒsad

b - a
= ƒ¿scd.

y = ƒsxd



The function (Figure 2) is continuous for and
differentiable for Since and the Mean Value Theorem
says that at some point c in the interval, the derivative must have the value

In this case we can identify c by solving the equation to
get However, it is not always easy to find c algebraically, even though we know it
always exists.

A Physical Interpretation

We can think of the number as the average change in ƒ over [a, b]
and as an instantaneous change. Then the Mean Value Theorem says that at some inte-
rior point the instantaneous change must equal the average change over the entire interval.

EXAMPLE 3 If a car accelerating from zero takes 8 sec to go 352 ft, its average veloc-
ity for the 8-sec interval is The Mean Value Theorem says that at some
point during the acceleration the speedometer must read exactly 30 mph 
(Figure 3).

(44 ft>sec)
352>8 = 44 ft>sec.

ƒ¿scd
sƒsbd - ƒsadd>sb - ad

c = 1.
2c = 2s4 - 0d>s2 - 0d = 2.

ƒ¿sxd = 2x
ƒs2d = 4,ƒs0d = 00 6 x 6 2.

0 … x … 2ƒsxd = x2

x

y

1

(1, 1)

2

B(2, 4)

y � x2

A(0, 0)

1

2

3

4

FIGURE 2 As we find in Example 2, is 
where the tangent is parallel to

the chord. 
c = 1

t

s

0
5

80

160 At this point,
the car’s speed
was 30 mph.

Time (sec)

(8, 352)

240

320

400

D
is

ta
nc

e 
(f

t)

s � f (t)

FIGURE 3 Distance versus elapsed
time for the car in Example 3. 
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EXAMPLE 2

COROLLARY 1 If at each point x of an open interval (a, b), then
for all where C is a constant.x H sa, bd,ƒsxd = C

ƒ¿sxd = 0

COROLLARY 2 If at each point x in an open interval (a, b), then
there exists a constant C such that for all That is,

is a constant function on (a, b).ƒ - g
x H sa, bd .ƒsxd = gsxd + C

ƒ¿sxd = g¿sxd

Find the function ƒ(x) whose derivative is sin x and whose graph passes
through the point (0, 2).

Solution Since the derivative of is , we see that ƒ and
g have the same derivative. Corollary 2 then says that for someƒsxd = -cos x + C

g¿(x) = sin xg sxd = -cos x

EXAMPLE 4

constant C. Since the graph of ƒ passes through the point (0, 2), the value of C is deter-
mined from the condition that :

The function is ƒsxd = -cos x + 3.

ƒs0d = -cos s0d + C = 2, so C = 3.

ƒs0d = 2



236 Chapter 4: Applications of Derivatives

Exercises 4.2

Checking the Mean Value Theorem
Find the value or values of c that satisfy the equation

in the conclusion of the Mean Value Theorem for the functions and in-
tervals in Exercises 1–8.

1.

2.

3.

4.

5.

7.

8.

Which of the functions in Exercises 9–14 satisfy the hypotheses of the
Mean Value Theorem on the given interval, and which do not? Give
reasons for your answers.

9.

10.

11.

12.

13.

14.

15. The function

is zero at and and differentiable on (0, 1), but its de-
rivative on (0, 1) is never zero. How can this be? Doesn’t Rolle’s
Theorem say the derivative has to be zero somewhere in (0, 1)?
Give reasons for your answer.

16. For what values of a, m, and b does the function

satisfy the hypotheses of the Mean Value Theorem on the interval
[0, 2]?

ƒsxd = •
3, x = 0

-x2
+ 3x + a, 0 6 x 6 1

mx + b, 1 … x … 2

x = 1x = 0

ƒsxd = e x, 0 … x 6 1

0, x = 1

ƒ(x) = e 2x - 3,           0 … x … 2

6x - x2
- 7, 2 6 x … 3

ƒ(x) = e x2
- x,             -2 … x … -1

2x2
- 3x - 3, -1 6 x … 0

ƒsxd = L
sin x

x  ,  -p … x 6 0

0, x = 0

ƒsxd = 2xs1 - xd, [0, 1]

ƒsxd = x4>5, [0, 1]

ƒsxd = x2>3, [-1, 8]

g(x) = e x3, -2 … x … 0

x2,    0 6 x … 2

ƒsxd = x3
- x2, [-1, 2]

ƒsxd = sin-1 x, [-1, 1]

ƒsxd = 2x - 1,  [1, 3]

ƒsxd = x +

1
x ,  c1

2
, 2 d

ƒsxd = x2>3, [0, 1]

ƒsxd = x2
+ 2x - 1, [0, 1]

ƒsbd - ƒsad
b - a

= ƒ¿scd
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THEOREM 6— L’Hôpital’s Rule Suppose that                            that ƒ and g are
differentiable on an open interval I containing a, and that 
Then

assuming that the limit on the right side of this equation exists.

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

 ,

g¿sxd Z 0 on I if x Z a .
ƒsad = g sad = 0,

indeterminate forms, so we apply
l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

(a)

(b)

(c)

Still differentiate again.

Not limit is found.
0
0

;= lim
x:0

 
- s1>4ds1 + xd-3>2

2
= -

1
8

0
0

;= lim
x:0

 
s1>2ds1 + xd-1>2

- 1>2
2x

0
0

lim
x:0

 
21 + x - 1 - x>2

x2

lim
x:0

 
21 + x - 1

x = lim
x:0

 

1

221 + x
1

=
1
2

lim
x:0

 
3x - sin x

x = lim
x:0

 
3 - cos x

1
=

3 - cos x
1

`
x=0

= 2

0>0
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Indeterminate Forms and L’Hôpital’s Rule

0/0Indeterminate Form

We use 0>0 , q # 0 , q - q , 00 , and 1q as a notation for an expression known as an indeterminate form.

EXAMPLE 1 The following limits involve 

(d)

limit is found.Not 
0
0

;= lim
x:0

 
cos x

6
=

1
6

Still 
0
0

= lim
x:0

 
sin x
6x

Still 
0
0

= lim
x:0

 
1 - cos x

3x2

0
0

lim
x:0

 
x - sin x

x3



Using L’Hôpital’s Rule

To find

by l’Hôpital’s Rule, continue to differentiate ƒ and g, so long as we still get the
form at But as soon as one or the other of these derivatives is differ-
ent from zero at we stop differentiating. L’Hôpital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.

x = a
0 x = a .>0

lim
x:a

  
ƒsxd
g sxd

EXAMPLE 2 Be careful to apply l’Hôpital’s Rule correctly:

Not limit is found.

Up to now the calculation is correct, but if we continue to differentiate in an attempt to 
apply l’Hôpital’s Rule once more, we get

which is not the correct limit. L’Hôpital’s Rule can only be applied to limits that give 
indeterminate forms, and is not an indeterminate form.

L’Hôpital’s Rule applies to one-sided limits as well.

EXAMPLE 3 In this example the one-sided limits are different.

(a)

Positive for 

(b)

Negative for  

Indeterminate Forms 

Sometimes when we try to evaluate a limit as by substituting we get an inde-
terminant form like or instead of . We first consider the form
q>q .

0>0q - q ,q>q , q # 0,
x = ax : a

ˆ / ˆ , ˆ # 0, ˆ � ˆ

x 6 0= lim
x:0-

 
cos x

2x
= - q

0
0

lim
x:0-

 
sin x
x2

x 7 0= lim
x:0+

 
cos x

2x
= q

0
0

lim
x:0+

 
sin x
x2

0>1

lim
x:0

 
cos x

2
=

1
2

,

0
0

;= lim
x:0

 
sin x

1 + 2x
=

0
1

= 0.

0
0

lim
x:0

 
1 - cos x

x + x2
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In more advanced treatments of calculus it is proved that l’Hôpital’s Rule applies to the
indeterminate form as well as to . If and as then

provided the limit on the right exists. In the notation may be either finite or infi-
nite. Moreover, may be replaced by the one-sided limits or x : a-.x : a+x : a

x : a, a

lim
x:a

  
ƒsxd
g sxd

= lim
x:a

  
ƒ¿sxd
g¿sxd

x : a ,g sxd : ; qƒsxd : ; q0>0q>q



EXAMPLE 4 Find the limits of these forms:

Solution

  The numerator and denominator are discontinuous at so we investigate the
one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open in-
terval with as an endpoint.

from the left

The right-hand limit is 1 also, with as the indeterminate form. There-
fore, the two-sided limit is equal to 1.

EXAMPLE 5 Find the limits of these forms:

Solution

; Let h = 1>x.q # 0 lim
x: q

ax sin 
1
x b = lim

h:0+

a1
h

 sin hb =  lim
h:0+

 
sin h

h
= 1

lim
x: q

ax sin 
1
x b

q # 0

s - q d>s - q d

= lim
x: sp>2d-

 
sec x tan x

sec2 x
= lim

x: sp>2d-

 sin x = 1

q

q
lim

x: sp>2d-

 
sec x

1 + tan x

x = p>2
x = p>2,

lim
x:p>2  

sec x
1 + tan x

q q
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EXAMPLE 6 Find the limit of this form:

Solution If then and

Similarly, if then and

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

Common denominator is x sin x.

Then we apply l’Hôpital’s Rule to the result:

Still 

= lim
x:0

  
sin x

2 cos x - x sin x
=

0
2

= 0.

0
0

= lim
x:0

  
1 - cos x

sin x + x cos x

0
0

 lim
x:0
a 1

sin x
-

1
x b = lim

x:0
  
x - sin x

x sin x

1
sin x

-
1
x =

x - sin x
x sin x

1
sin x

-
1
x : - q - s - q d = - q + q .

sin x : 0-x : 0- ,

1
sin x

-
1
x : q - q .

sin x : 0+x : 0+ ,

lim
x:0
a 1

sin x
-

1
x b .

q - q
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Exercises 4.5

Finding Limits in Two Ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then 
evaluate the limit using a method studied .

1. 2.

3. 4.

5. 6.

Applying l’Hôpital’s Rule
Use l’Hôpital’s rule to find the limits in Exercises 7–50.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19.

.

.

lim
x:1

 
x - 1

ln x - sin px
lim
u:p 2

 
1 - sin u

1 + cos 2u

lim
u: -p>3 

3u + p

sin (u + (p>3))
lim
u:p>2 

2u - p

cos (2p - u)

lim
x:0

 
sin x - x

x3lim
x:0

 
8x2

cos x - 1

lim
t:0

 
sin 5t

2t
lim
t:0

 
sin t2

t

lim
x: q

 
x - 8x2

12x2
+ 5x

lim
x: q

 
5x3

- 2x

7x3
+ 3

lim
t:1

 
3t3 - 3

4t3 - t - 3
lim

t: -3
 
t3

- 4t + 15
t2

- t - 12

lim
x: - 5

 
x2

- 25
x + 5

lim
x:2

 
x - 2
x2

- 4

lim
x: q

 
2x2

+ 3x

x3
+ x + 1

lim
x:0

 
1 - cos x

x2

lim
x:1

 
x3

- 1
4x3

- x - 3
lim

x: q

 
5x2

- 3x

7x2
+ 1

lim
x:0

 
sin 5x

xlim
x: -2

 
x + 2
x2

- 4
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Monotonic Functions and the First Derivative Test

Increasing Functions and Decreasing Functions

COROLLARY 3 Suppose that ƒ is continuous on [a, b] and differentiable on
(a, b).

If ƒ¿sxd 6 0 at each point x H sa, bd, then ƒ is decreasing on [a, b] .

If ƒ¿sxd 7 0 at each point x H sa, bd, then ƒ is increasing on [a, b] .
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EXAMPLE 1 Find the critical points of and identify the 
intervals on which ƒ is increasing and on which ƒ is decreasing.

Solution The function ƒ is everywhere continuous and differentiable. The first derivative

is zero at and These critical points subdivide the domain of ƒ to create
nonoverlapping open intervals and on which is either pos-
itive or negative. We determine the sign of by evaluating at a convenient point in each
subinterval. The behavior of ƒ is determined by then applying Corollary 3 to each subin-
terval. The results are summarized in the following table, and the graph of ƒ is given in
Figure 4.20.

Interval

evaluated

Sign of 

Behavior of ƒ increasing decreasing increasing

+-+ƒœ

ƒ¿s3d = 15ƒ¿s0d = -12ƒ¿s -3d = 15ƒœ

2 6 x 6 q-2 6 x 6 2- q 6 x 6 -2

ƒ¿ƒ¿

ƒ¿s2, q ds - q , -2d, s -2, 2d ,
x = 2.x = -2

= 3sx + 2dsx - 2d

 ƒ¿sxd = 3x2
- 12 = 3sx2

- 4d

ƒsxd = x3
- 12x - 5

x

(–2, 11)

(2, –21)

y

1 2 3 4–2–3–4 –1 0

–10

–20

10

20

y � x3 – 12x  –  5

FIGURE 1     The function 
is monotonic on three

separate intervals (Example 1).
x3

- 12x - 5
ƒsxd =

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function ƒ, and that ƒ is 
differentiable at every point in some interval containing c except possibly at 
c itself. Moving across this interval from left to right,

1. if changes from negative to positive at c, then ƒ has a local minimum at c;

2. if changes from positive to negative at c, then ƒ has a local maximum at c;

3. if does not change sign at c (that is, is positive on both sides of c or
negative on both sides), then ƒ has no local extremum at c.

ƒ¿ƒ¿

ƒ¿

ƒ¿



EXAMPLE 2 Find the critical points of

Identify the intervals on which ƒ is increasing and decreasing. Find the function’s local and
absolute extreme values.

Solution The function ƒ is continuous at all x since it is the product of two continuous
functions, and The first derivative

is zero at and undefined at There are no endpoints in the domain, so the crit-
ical points and are the only places where ƒ might have an extreme value.

The critical points partition the x-axis into intervals on which is either positive or
negative. The sign pattern of reveals the behavior of ƒ between and at the critical points,
as summarized in the following table. 

Interval

Sign of

Behavior of ƒ decreasing decreasing increasing

This is also an ab-
solute minimum since ƒ is decreasing on and increasing on Figure 2
shows this value in relation to the function’s graph.

[1, q d .s - q , 1]
ƒs1d = 11>3s1 - 4d = -3.

+--ƒœ

x 7 10 6 x 6 1x 6 0

ƒ¿

ƒ¿

x = 1x = 0
x = 0.x = 1

=
4
3

 x-2>3Qx - 1R =

4sx - 1d
3x2>3

 ƒ¿sxd =
d
dx

 Qx4>3
- 4x1>3R =

4
3

 x1>3
-

4
3

 x-2>3

sx - 4d .x1>3

ƒsxd = x1>3sx - 4d = x4>3
- 4x1>3.

x

y

0 1 2 3 4

2

4

–3

–1

y � x1/3(x � 4)

(1, �3)

FIGURE   2 The function 
decreases when and

increases when (Example 2).x 7 1
x 6 1x1>3 sx - 4d
ƒsxd =
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The value of the local minimum is 

Exercises 4.3

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives
are given in Exercises 1–14:

a. What are the critical points of ƒ?

b. On what intervals is ƒ increasing or decreasing?

c. At what points, if any, does ƒ assume local maximum and
minimum values?

1. 2.

3. 4.

6.

7.

8.

9. 10. ƒ¿(x) = 3 -

6

2x
, x Z 0ƒ¿(x) = 1 -

4
x2 , x Z 0

ƒ¿(x) =

(x - 2)(x + 4)

(x + 1)(x - 3)
 , x Z -1, 3

ƒ¿(x) =

x2(x - 1)

x + 2
, x Z -2

ƒ¿sxd = sx - 7dsx + 1dsx + 5d

ƒ¿sxd = sx - 1d2sx + 2d2ƒ¿sxd = sx - 1d2sx + 2d
ƒ¿sxd = sx - 1dsx + 2dƒ¿sxd = xsx - 1d

11. 12.

13.

14.

Identifying Extrema
In Exercises 15–44:

a. Find the open intervals on which the function is increasing
and decreasing.

b. Identify the function’s local and absolute extreme values, if
any, saying where they occur.

15. 16.

ƒ¿(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

ƒ¿(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

ƒ¿sxd = x-1>2sx - 3dƒ¿sxd = x-1>3sx + 2d

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)

y

x

–2

–1

1

2

2 31–1–2–3

1

–1

–2



17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

40. k sxd = x2>3sx2
- 4d

g sxd = x2>3sx + 5dƒsxd = x1>3sx + 8d

ƒsxd =

x3

3x2
+ 1

ƒsxd =

x2
- 3

x - 2
, x Z 2

g sxd = x225 - xg sxd = x28 - x2

g sxd = 42x - x2
+ 3ƒsxd = x - 62x - 1

Kstd = 15t3
- t5Hstd =

3
2

 t4
- t6

g sxd = x4
- 4x3

+ 4x2ƒsxd = x4
- 8x2

+ 16

hsrd = sr + 7d3ƒsrd = 3r3
+ 16r

ƒsud = 6u - u3ƒsud = 3u2
- 4u3

hsxd = 2x3
- 18xhsxd = -x3

+ 2x2

g std = -3t2
+ 9t + 5g std = - t2

- 3t + 3

57.

58.

59.

60.

61.

62.

63.

64. ƒsxd = sec2 x - 2 tan x, -p

2
6 x 6

p

2

ƒsxd = csc2 x - 2 cot x, 0 6 x 6 p

ƒsxd = -2 cos x - cos2 x, -p … x … p

ƒsxd =

x
2

- 2 sin 
x
2

 , 0 … x … 2p

ƒsxd = -2x + tan x, -p

2
6 x 6

p

2

ƒsxd = 23 cos x + sin x, 0 … x … 2p

ƒsxd = sin x - cos x, 0 … x … 2p

ƒsxd = sin 2x, 0 … x … p

y 5 f (x)

–2

–1

1

2

2 31–1–2–3
x

y y

x

–2

–1

1

2

2 31–1–2–3

y 5 f (x)
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Concavity and Curve Sketching

DEFINITION The graph of a differentiable function is

(a) concave up on an open interval I if is increasing on I;

(b) concave down on an open interval I if is decreasing on I.ƒ¿

ƒ¿

y = ƒsxd

If is twice-differentiable, we will use the notations and interchangeably
when denoting the second derivative.

y–ƒ–y = ƒsxd

The Second Derivative Test for Concavity

Let be twice-differentiable on an interval I.

1. If on I, the graph of ƒ over I is concave up.

2. If on I, the graph of ƒ over I is concave down.ƒ– 6 0

ƒ– 7 0

y = ƒsxd



EXAMPLE 1

(a) The curve  is concave down on where 
and concave up on where 

(b) The curve (Figure  1) is concave up on because its second deriv-
ative is always positive.

EXAMPLE 2 Determine the concavity of 

Solution The first derivative of is and the second derivative is
The graph of is concave down on where 

is negative. It is concave up on  where  is positive (Figure 2).

Points of Inflection

y– = -sin xsp, 2pd ,
y– = -sin xs0, pd ,y = 3 + sin xy– = -sin x.

y¿ = cos x,y = 3 + sin x

y = 3 + sin x on [0, 2p] .

y– = 2
s - q , q dy = x2

y– = 6x 7 0.s0, q d
y– = 6x 6 0s - q , 0dy = x3

C
O

N
C

A
V

E
U

P

C
O

N
C

A
V

E
U

P

–2 –1 0 1 2
x

1

2

3

4

y

y � x2

y'' � 0 y'' � 0

FIGURE 1  The graph of 
is concave up on every interval 

ƒsxd = x2

x

y
y 5 3 1 sinx 

p 2p0
–1

1

2

3

4

y'' 5 – sinx

(p, 3)

FIGURE 2 Using the sign of to
determine the concavity of y

y–

DEFINITION A point where the graph of a function has a tangent line and
where the concavity changes is a point of inflection.

At a point of inflection (c, ƒ(c)), either or fails to exist. ƒ–(c)ƒ–(c) = 0

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:28 PM  Page 244



EXAMPLE 3 The graph of has a horizontal tangent at the origin because
when However, the second derivative

fails to exist at Nevertheless, for and for so the
second derivative changes sign at and there is a point of inflection at the origin. The
graph is shown in Figure 3.

Here is an example showing that an inflection point need not occur even though both
derivatives exist and 

EXAMPLE 4 The curve has no inflection point at (Figure 4). Even
though the second derivative is zero there, it does not change sign.

EXAMPLE 5 The graph of has a point of inflection at the origin because the
second derivative is positive for and negative for 

However, both and fail to exist at and there is a vertical tangent
there. See Figure 5.

EXAMPLE 6 A particle is moving along a horizontal coordinate line (positive to the
right) with position function

Find the velocity and acceleration, and describe the motion of the particle.

Solution The velocity is

and the acceleration is

 

is zero at the critical points and 

Interval

Sign of 

Behavior of s increasing decreasing increasing

Particle motion right left right

+-+Y � sœ

11>3 6 t1 6 t 6 11>30 6 t 6 1

t = 11>3.t = 1  Notice that the first derivative    sy = s¿ d

astd = y¿std = s–std = 12t - 28 = 4s3t - 7d.

ystd = s¿std = 6t2
- 28t + 22 = 2st - 1ds3t - 11d ,

sstd = 2t3
- 14t2

+ 22t - 5, t Ú 0.

x = 0,y–y¿ = x-2>3>3
y– =

d2

dx2 ax1>3b =
d
dx

 a1
3

 x-2>3b = -
2
9

 x-5>3 .

x 7 0:x 6 0
y = x1>3

y– = 12x2
x = 0y = x4

ƒ– = 0.

x = 0
x 7 0,ƒ–(x) 7 0x 6 0ƒ–(x) 6 0x = 0.

ƒ–(x) =
d
dx
a5

3
 x2>3b =

10
9

 x-1>3

x = 0.ƒ¿(x) = (5>3)x2>3
= 0

ƒ(x) = x5>3

x

y

0

1

1

2

–1

y � x4

y'' � 0

FIGURE 4  The graph of has
no inflection point at the origin, even
though y– = 0

y = x4

x

y

0

y 5 x1/3Point of
inflection

FIGURE 5 A point of
inflection where and fail
to exist .

y–y¿

–2

–1

21–2

2

1

0

y 5 x5/3

x

y

Point of
inflection

–1

FIGURE 3  The graph of 
has a horizontal tangent at the origin where
the concavity changes, although does
not exist at x = 0

ƒ–

ƒ(x) = x5>3

7001_AWLThomas_ch04p222-296.qxd  10/12/09  2:28 PM  Page 245

When the function s(t) is increasing, the particle is moving to the right; when s(t) is
decreasing, the particle is moving to the left



The particle is moving to the right in the time intervals [0, 1) and and moving
to the left in (1, ). It is momentarily stationary (at rest) at and 

The acceleration is zero when 

Interval

Sign of 

Graph of s concave down concave up

The particle starts out moving to the right while slowing down, and then reverses and
begins moving to the left at under the influence of the leftward acceleration over
the time interval The acceleration then changes direction at but the
particle continues moving leftward, while slowing down under the rightward accelera-
tion. At the particle reverses direction again: moving to the right in the same
direction as the acceleration.

Second Derivative Test for Local Extrema

t = 11>3
t = 7>3[0, 7>3).

t = 1

+-a � sfl

7>3 6 t0 6 t 6 7>3
t = 7>3.astd = s–std = 4s3t - 7d

t = 11>3.t = 111>3 s11>3, q d ,

ƒsxd = x4
- 4x3

+ 10

THEOREM 5—Second Derivative Test for Local Extrema Suppose is continuous
on an open interval that contains 

1. If and then ƒ has a local maximum at 

2. If and then ƒ has a local minimum at 

3. If and then the test fails. The function ƒ may have a 
local maximum, a local minimum, or neither.

ƒ–scd = 0,ƒ¿scd = 0

x = c.ƒ–scd 7 0,ƒ¿scd = 0

x = c.ƒ–scd 6 0,ƒ¿scd = 0

x = c.
ƒ–

f ' 5 0, f '' , 0
⇒ local max

f ' 5 0, f '' . 0
⇒ local min
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EXAMPLE 7 Sketch a graph of the function

using the following steps.

(a) Identify where the extrema of ƒ occur.

(b) Find the intervals on which ƒ is increasing and the intervals on which ƒ is decreasing.

(c) Find where the graph of ƒ is concave up and where it is concave down.

(d) Sketch the general shape of the graph for ƒ.

(e) Plot some specific points, such as local maximum and minimum points, points of 
inflection, and intercepts. Then sketch the curve.

Solution The function ƒ is continuous since exists. The domain of
ƒ is and the domain of is also Thus, the critical points of ƒ occur
only at the zeros of Since

,

the first derivative is zero at and We use these critical points to define inter-
vals where ƒ is increasing or decreasing.

x = 3.x = 0

ƒ¿sxd = 4x3
- 12x2

= 4x2sx - 3d

ƒ¿ .
s - q , q d .ƒ¿s - q , q d,

ƒ¿sxd = 4x3
- 12x2



Interval

Sign of 

Behavior of ƒ decreasing decreasing increasing

(a) Using the First Derivative Test for local extrema and the table above, we see that there
is no extremum at and a local minimum at 

(b) Using the table above, we see that ƒ is decreasing on and [0, 3], and increas-
ing on 

(c) is zero at and We use these points
to define intervals where ƒ is concave up or concave down.

Interval

Sign of 

Behavior of ƒ concave up concave down concave up

We see that ƒ is concave up on the intervals and and concave down on
(0, 2).

(d) Summarizing the information in the last two tables, we obtain the following.

decreasing decreasing decreasing increasing

concave up concave down concave up concave up

The general shape of the curve is shown in the accompanying figure.

(e) Plot the curve’s intercepts (if possible) and the points where and are zero. Indicate
any local extreme values and inflection points. Use the general shape as a guide to sketch
the curve. (Plot additional points as needed.) Figure 6 shows the graph of ƒ.

y–y¿

conc
down

conc
up

conc
up

conc
up

decr decr incrdecr

infl
point

infl
point

local
min

0 2 3

General shape

3<x2<x<30<x<2x<0

s2, q d ,s - q , 0d

+-+ƒfl

2 6 x0 6 x 6 2x 6 0

x = 2.x = 0ƒ–sxd = 12x2
- 24x = 12xsx - 2d

[3, q d .
s - q , 0]

x = 3.x = 0

+--ƒœ

3 6 x0 6 x 6 3x 6 0

x

y

0 1

5

–5
–1

–10

(0, 10)

2 3 4

–15

–20

10

15

20

Inflection
point

Local
minimum

Inflection
point

y � x4 � 4x3 � 10

(2, –6)

(3, –17)

FIGURE 6   The graph of 
(Example 7).x4

- 4x3
+ 10

ƒsxd =
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EXAMPLE 8 Sketch the graph of 

Solution

1. The domain of ƒ is and there are no symmetries about either axis or the
origin (Section 1.1).

2. Find and

3. Behavior at critical points. The critical points occur only at where 
(Step 2) since exists everywhere over the domain of ƒ. At 

yielding a relative minimum by the Second Derivative Test.
At yielding a relative maximum by the Second Derivative
test.

4. Increasing and decreasing. We see that on the interval the derivative
and the curve is decreasing. On the interval and the

curve is increasing; it is decreasing on where again.ƒ¿sxd 6 0s1, q d
s -1, 1d, ƒ¿sxd 7 0ƒ¿sxd 6 0,

s - q , -1d

x = 1,  f –(1) = -1 6 0
ƒ–(-1) = 1 7 0

x = -1,ƒ¿

ƒ¿sxd = 0x = ;1

=

4xsx2
- 3d

s1 + x2d3

 ƒ–sxd =

s1 + x2d2 # 2s -2xd - 2s1 - x2d[2s1 + x2d # 2x]

s1 + x2d4

=

2s1 - x2d
s1 + x2d2

 ƒ¿sxd =

s1 + x2d # 2sx + 1d - sx + 1d2 # 2x

s1 + x2d2

 ƒsxd =

sx + 1d2

1 + x2

ƒ– .ƒ¿

s - q , q d

ƒsxd =

sx + 1d2

1 + x2 .

Procedure for Graphing 
1. Identify the domain of ƒ and any symmetries the curve may have.

2. Find the derivatives and 

3. Find the critical points of ƒ, if any, and identify the function’s behavior at each
one.

4. Find where the curve is increasing and where it is decreasing.

5. Find the points of inflection, if any occur, and determine the concavity of the
curve.

6. Identify any asymptotes that may exist (see Section 2.6).

7. Plot key points, such as the intercepts and the points found in Steps 3–5, and
sketch the curve together with any asymptotes that exist.

y– .y¿

y � ƒ(x)

at
x = 0
y-intercept sy = 1d

x = -1,x-intercept at

Critical points:
x = -1, x = 1

After some algebra
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5. Inflection points. Notice that the denominator of the second derivative (Step 2) is 

always positive. The second derivative is zero when and The

second derivative changes sign at each of these points: negative on 

positive on negative on and positive again on Thus
each point is a point of inflection. The curve is concave down on the interval 

concave up on concave down on and concave

up again on 

6. Asymptotes. Expanding the numerator of ƒ(x) and then dividing both numerator and
denominator by gives

Expanding numerator

Dividing by 

We see that as and that as Thus, the line
is a horizontal asymptote.

Since ƒ decreases on and then increases on we know that
is a local minimum. Although ƒ decreases on it never crosses

the horizontal asymptote on that interval (it approaches the asymptote
from above). So the graph never becomes negative, and is an absolute
minimum as well. Likewise, is an absolute maximum because the graph
never crosses the asymptote on the interval approaching it
from below. Therefore, there are no vertical asymptotes (the range of ƒ is

).

7. The graph of ƒ is sketched in Figure 7. Notice how the graph is concave down as it
approaches the horizontal asymptote as and concave up in its ap-
proach to as 

EXAMPLE 9 Sketch the graph of 

Solution

1. The domain of ƒ is all nonzero real numbers. There are no intercepts because neither x
nor ƒ(x) can be zero. Since we note that ƒ is an odd function, so the
graph of ƒ is symmetric about the origin.

2. We calculate the derivatives of the function, but first rewrite it in order to simplify our
computations:

Function simplified for differentiation

Combine fractions to solve easily . 

Exists throughout the entire domain of ƒ

3. The critical points occur at where Since and
we see from the Second Derivative Test that a relative maximum occurs

at with and a relative minimum occurs at with
ƒ(2) = 2.

x = 2ƒ(-2) = -2,x = -2
ƒ–(2) 7 0,

ƒ–(-2) 6 0ƒ¿(x) = 0.x = ;2

ƒ–(x) =
4
x3

ƒ¿(x) = 0ƒ¿(x) =
1
2

-
2
x2 =

x2
- 4

2x2

ƒ(x) =
x2

+ 4
2x

=
x
2

+
2
x

ƒ(-x) = -ƒ(x),

ƒ(x) =
x2

+ 4
2x

.

x : q .y = 1
x : - q ,y = 1

0 … y … 2

s - q , -1d ,y = 1
ƒs1d = 2

ƒs -1d = 0
y = 1

s1, q d ,ƒs -1d = 0
s -1, 1d ,s - q , -1d

y = 1
x : - q .ƒsxd : 1-x : qƒsxd : 1+

x2
=

1 + s2>xd + s1>x2d

s1>x2d + 1
.

 ƒsxd =

sx + 1d2

1 + x2 =
x2

+ 2x + 1
1 + x2

x2

A23, q B . A0, 23 B ,A -23, 0 B ,A - q , -23 B ,
A23, q B .A0, 23 B ,A -23, 0 B , A - q , -23 B ,

23.x = -23, 0 ,ƒ–

–1 1

1

2

x

y

(1, 2)

Point of inflection
where x � �3

Point of inflection
where x � ��3

Horizontal
asymptote

y � 1

FIGURE 7    The graph of y =

sx + 1d2

1 + x2
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4. On the interval the derivative is positive because so the
graph is increasing; on the interval the derivative is negative and the graph is
decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on

5. There are no points of inflection because whenever 
whenever and exists everywhere and is never zero throughout the domain
of ƒ. The graph is concave down on the interval and concave up on the inter-
val 

6. From the rewritten formula for ƒ(x), we see that

so the y-axis is a vertical asymptote. Also, as or as the graph of
ƒ(x) approaches the line Thus is an oblique asymptote.y = x>2y = x>2.

x : - q ,x : q

lim
x:0 +

 ax
2

+
2
x b = + q   and  lim

x:0 -

 ax
2

+
2
x b = - q ,

(0, q ).
(- q , 0)

ƒ–x 7 0,
ƒ–(x) 7 0x 6 0,ƒ–(x) 6 0

(2, q ).

(-2, 0)
x2

- 4 7 0ƒ¿(- q , -2)

–2

42–4 –2

4

2

0 x

y

–4

y 5
2
xxx

x2 1 4y 5
2x

(2, 2)

(–2, –2)

FIGURE 8   The graph of y =

x2
+ 4

2x
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Exercises 4.4

Analyzing Functions from Graphs
Identify the inflection points and local maxima and minima of the
functions graphed in Exercises 1–8. Identify the intervals on which
the functions are concave up and concave down.

1. 2.

3. 4.

0
x

y

y �                                                   x1/3(x2 � 7)9
14

0
x

y

y �                              (x2 � 1)2/33
4

0
x

y

y �                                                           � 2x2 � 4x4

4

0
x

y

y �                                                           �                                                          � 2x �x3

3
1
3

x2

2

5. 6.

7. 8.

Graphing Equations
Use the steps of the graphing procedure on page 248 to graph the
equations in Exercises 9–58. Include the coordinates of any local and
absolute extreme points and inflection points.

9. 10.

11. 12. y = xs6 - 2xd2y = x3
- 3x + 3

y = 6 - 2x - x2y = x2
- 4x + 3

x

y

0–� 3�
2

y � 2 cos x � �2 x,  –� � x �
3�
2

x

y

y � sin �x�, –2� � x � 2�

0

NOT TO SCALE

x

y

y � tan x � 4x, –                                           � x ��
2

�
2

00
x

y

–

y � x � sin 2x, –                                                                       � x �2�
3

2�
3

2�
3

2�
3



13. 14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

Sketching the General Shape, Knowing 
Each of Exercises 59–80 gives the first derivative of a continuous
function Find and then use steps 2–4 of the graphing
procedure on page 248 to sketch the general shape of the graph of ƒ.

59. 60.

61. 62.

63. 64. y¿ = sx - 1d2s2x + 3dy¿ = xsx2
- 12d

y¿ = x2s2 - xdy¿ = xsx - 3d2

y¿ = x2
- x - 6y¿ = 2 + x - x2

y–y = ƒsxd .

yœ

y = ƒ x2 - 2 x ƒy = ƒ x2
- 1 ƒ

y =

5
x4

+ 5
y =

8x

x2
+ 4

y = 23 x3
+ 1y =

x2
- 3

x - 2

y = x2
+

2
xy = 216 - x2

y = (2 - x2)3>2y = x28 - x2

y = x2>3(x - 5)y = x2>3 a5
2

- xb
y = 5x2>5

- 2xy = 2x - 3x2>3
y =

21 - x2

2x + 1
y =

x

2x2
+ 1

y = x2>5y = x1>5
y = cos x + 23 sin x, 0 … x … 2p

y = sin x cos x, 0 … x … p

y =

4
3

 x - tan x, -p

2
6 x 6

p

2

y = 23x - 2 cos x, 0 … x … 2p

y = x - sin x, 0 … x … 2p

y = x + sin x, 0 … x … 2p

y = x ax
2

- 5b4

y = x5
- 5x4

= x4sx - 5d
y = x4

+ 2x3
= x3sx + 2d

y = 4x3
- x4

= x3s4 - xd
y = -x4

+ 6x2
- 4 = x2s6 - x2d - 4

y = x4
- 2x2

= x2sx2
- 2d

y = 1 - sx + 1d3

y = sx - 2d3
+ 1

y = 1 - 9x - 6x2
- x3y = -2x3

+ 6x2
- 3
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65. 66.

67.

68.

69. 70.

71.

72.

73.

74.

75. 76.

77. 78.

79.

80.

Sketching y from Graphs of and 
Each of Exercises 81–84 shows the graphs of the first and second de-
rivatives of a function Copy the picture and add to it a
sketch of the approximate graph of ƒ, given that the graph passes
through the point P.

81. 82.

83.

84.

Graphing Rational Functions
Graph the rational functions in Exercises 85–102.

85. 86.

87. 88.

89. 90. y =

x2

x2
- 1

y =

1
x2

- 1

y =

x2
- 4

2x
y =

x4
+ 1

x2

y =

x2
- 49

x2
+ 5x - 14

y =

2x2
+ x - 1

x2
- 1

y � f '(x)

y � f ''(x)

P

0
x

y

y � f '(x)

y � f ''(x)

P

0
x

y

y � f '(x)

y � f ''(x)
P

x

y

y � f '(x)

y � f ''(x)

P

x

y

y = ƒsxd .

yflyœ

y¿ = e -x2,  x … 0

x2,    x 7 0

y¿ = 2 ƒ x ƒ = e -2x,  x … 0

2x,    x 7 0

y¿ = x-4>5sx + 1dy¿ = x-2>3sx - 1d
y¿ = sx - 2d-1>3y¿ = sx + 1d-2>3

y¿ = sin t, 0 … t … 2p

y¿ = cos t, 0 … t … 2p

y¿ = 1 - cot2 u, 0 6 u 6 p

y¿ = tan2 u - 1, -

p

2
6 u 6

p

2

y¿ = csc2  
u

2
 , 0 6 u 6 2py¿ = cot  

u

2
 , 0 6 u 6 2p

y¿ = tan x, -

p

2
6 x 6

p

2

y¿ = sec2 x, -

p

2
6 x 6

p

2

y¿ = sx2
- 2xdsx - 5d2y¿ = s8x - 5x2d(4 - x)2
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91. 92.

93. 94.

95. 96.

97. 98.

99. 100. y =

x - 1
x2(x - 2)

y =

x

x2
- 1

y =

x3
+ x - 2

x - x2y =

x3
- 3x2

+ 3x - 1
x2

+ x - 2

y = -  
x2

- x + 1
x - 1

y =

x2
- x + 1
x - 1

y = -  
x2

- 4
x + 1

y =

x2

x + 1

y =

x2
- 4

x2
- 2

y = -  
x2

- 2
x2

- 1


