Inverse of a Matrix using Minors, Cofactors and Adjugate

We can calculate the Inverse of a Matrix by:

- Step 1: calculating the Matrix of Minors,
- Step 2: then turn that into the Matrix of Cofactors,
- Step 3: then the Adjugate, and
- Step 4: multiply that by $1 /$ Determinant.

But it is best explained by working through an example!

Example: find the Inverse of A:

$$
A=\left[\begin{array}{rrr}
3 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array}\right]
$$

It needs 4 steps. It is all simple arithmetic but there is a lot of it, so try not to make a mistake!

Step 1: Matrix of Minors

The first step is to create a "Matrix of Minors". This step has the most calculations:
For each element of the matrix:

- ignore the values on the current row and column
- calculate the determinant of the remaining values

Put those determinants into a matrix (the "Matrix of Minors")

Determinant

For a 2×2 matrix (2 rows and 2 columns) the determinant is easy: ad-bc

Think of a cross:

- Blue means positive (+ad),
- Red means negative (-bc)

(It gets harder for a 3×3 matrix, etc)

The Calculations

Here are the first two, and last two, calculations of the "Matrix of Minors" (notice how I ignore the values in the current row and columns, and calculate the determinant using the remaining values):

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
0 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array}\right] 0 \times 1-(-2) \times 1=2} \\
& {\left[\begin{array}{rrr}
3 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array}\right] 2 \times 1-(-2) \times 0=2} \\
& \\
& {\left[\begin{array}{rrr}
3 & 0 & 2 \\
2 & 0 & -2 \\
& 0 & 1
\end{array}\right] 3 \times-2-2 \times 2=-10} \\
& {\left[\begin{array}{rrr}
3 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 0
\end{array}\right] 3 \times 0-0 \times 2=0}
\end{aligned}
$$

And here is the calculation for the whole matrix:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 \times 1-(-2) \times 1 & 2 \times 1-(-2) \times 0 & 2 \times 1-0 \times 0 \\
0 \times 1-2 \times 1 & 3 \times 1-2 \times 0 & 3 \times 1-0 \times 0 \\
0 \times(-2)-2 \times 0 & 3 \times(-2)-2 \times 2 & 3 \times 0-0 \times 0
\end{array}\right]=\left[\begin{array}{rrr}
2 & 2 & 2 \\
-2 & 3 & 3 \\
0 & -10 & 0
\end{array}\right] } \\
& \text { Matrix of Minors }
\end{aligned}
$$

Step 2: Matrix of Cofactors

This is easy! Just apply a "checkerboard" of minuses to the "Matrix of Minors". In other words, we need to change the sign of alternate cells, like this:

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & 2 & 2 \\
-2 & 3 & 3 \\
0 & -10 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
+ & \ominus & + \\
+ & + & \Theta \\
+ & \Theta & +
\end{array}\right]}
\end{aligned} \xrightarrow{[} \boldsymbol{\text { Matrix of Minors }} \boldsymbol{[\begin{array} { r r r }
{ 2 } & { - 2 } & { 2 } \\
{ + 2 } & { 3 } & { - 3 } \\
{ 0 } & { + 1 0 } & { 0 }
\end{array}]} \text { Matrix of CoFactors }
$$

Step 3: Adjugate (also called Adjoint)

Now "Transpose" all elements of the previous matrix... in other words swap their positions over the diagonal (the diagonal stays the same):

$$
\left[\begin{array}{ccc}
2 & 2 & 0 \\
-2 & 3 & \rightarrow 10 \\
2 & -3 & 0
\end{array}\right]
$$

Step 4: Multiply by 1/Determinant

Now find the determinant of the original matrix. This isn't too hard, because we already calculated the determinants of the smaller parts when we did "Matrix of Minors".

So: multiply the top row elements by their matching "minor" determinants:

$$
\text { Determinant }=3 \times 2-0 \times 2+2 \times 2=\mathbf{1 0}
$$

And now multiply the Adjugate by 1/Determinant:

$$
\begin{array}{r}
A^{-1}=\frac{1}{10}\left[\begin{array}{rrr}
2 & 2 & 0 \\
-2 & 3 & 10 \\
2 & -3 & 0
\end{array}\right]= \\
\text { Adjugate } \\
{\left[\begin{array}{rrr}
0.2 & 0.2 & 0 \\
-0.2 & 0.3 & 1 \\
0.2 & -0.3 & 0
\end{array}\right]} \\
\text { Inverse }
\end{array}
$$

And we are done!

Compare this answer with the one we got on Inverse of a Matrix using Elementary Row Operations. Is it the same? Which method do you prefer?

Larger Matrices

It is exactly the same steps for larger matrices (such as a $4 \times 4,5 \times 5$, etc), but wow! there is a lot of calculation involved.

For a 4×4 Matrix we have to calculate 163×3 determinants. So it is often easier to use computers (such as the Matrix Calculator.)

