Unbounded Solution

The unbounded solution is explained in the following Example.

Example

Consider the following linear programming problem.
Maximize $5 x_{1}+4 x_{2}$
Subject to:

$$
\begin{aligned}
x_{1}-x_{2} & \leq 8 \\
x_{1} & \leq 7 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Solution :

Introduce the slack variables s_{3} and s_{4}, so that the inequalities becomes as equation as follows:

$$
\begin{aligned}
& x_{1}+s_{3}=7 \\
& x_{1}-x_{2}+s_{4}=8 \\
& x_{1}, x_{2}, s_{3}, s_{4} \geq 0
\end{aligned}
$$

The calculation of simplex procedures and tables are as follows:

CB	Basic variables	$\begin{aligned} & \mathrm{C}_{\mathrm{j}} \\ & \mathrm{XB} \end{aligned}$	$\begin{aligned} & 5 \\ & x_{1} \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{x}_{2} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & S_{3} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~S}_{4} \end{aligned}$
0	S3	7	1	0	1	0
0	S_{4}	8	1	-1	0	1
		$\mathrm{Z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$	-5	-4	0	0

CB	Basic variables	$\begin{aligned} & \mathrm{C}_{\mathrm{j}} \\ & \mathrm{XB} \end{aligned}$	$\begin{aligned} & 5 \\ & x_{1} \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \mathrm{x}_{2} \end{aligned}$	0 S_{3}	0 S_{4}
5	X_{1}	7	1	0	1	0
0	S4	1	0	-1	-1	1
		$z_{j}-\mathrm{c}_{j}$	0	-4	5	0

Note that $z_{2}-c_{2}<0$ which indicates x_{2} should be introduced as a basic variable in the next iteration. However, both $y_{12} \leq 0, y_{22} \leq 0$.

Thus, it is not possible to proceed with the simplex method of calculation any further as we cannot decide which variable will be non-basic at the next iteration. This is the criterion for unbounded solution.

NOTE: If in the course of simplex computation $\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}<0$ but $\mathrm{y}_{\mathrm{ij}} \leq 0$ for all i then the problem has no finite solution.

But in this case we may observe that the variable x_{2} is unconstrained and can be increased arbitrarily. This is why the solution is unbounded.

The solutions of the exercises:
Exercise 1: \quad Maximize $f(x, y)=5 x+y$
Subject to

$$
\begin{gathered}
x+2 y+z \leq 6 \\
4 x+3 y \leq 120 \\
x, y \geq 0
\end{gathered}
$$

Solution:

The slack equations are:

$$
\begin{aligned}
& x+2 y+s_{1}=6 \\
& 4 x+3 y+s_{2}=120
\end{aligned}
$$

Rewrite the objective function:

$$
P=5 x+y \Rightarrow-5 x-y+P=0
$$

The initial simplex tableau:

$$
\left[\begin{array}{ccccc|c}
\boldsymbol{x} & \boldsymbol{y} & \boldsymbol{s}_{1} & \boldsymbol{s}_{2} & \boldsymbol{P} \\
{\left[\begin{array}{cccc|c}
1 & 2 & 1 & 0 & 0 \\
4 & 3 & 0 & 1 & 0 \\
\hline-50
\end{array}\right]}
\end{array}\right.
$$

The most negative indicator in the last row is -5 and so the pivot column is the x-column:
$\left[\begin{array}{ccccc|c}\boldsymbol{x} & \boldsymbol{y} & s_{1} & s_{2} & \boldsymbol{P} \\ {\left[\left.\begin{array}{cccc|c}1 & 2 & 1 & 0 & 0 \\ 4 & 3 & 0 & 1 & 0 \\ \hline-5 & -1 & 0 & 0 & 1\end{array} \right\rvert\, 0\right.}\end{array}\right]$
p.c: $6 / 1=6,120 / 4=30$

The smallest non-negative quotient is $\mathbf{6}$. Pivot about $\mathbf{1}$ in row 1 :

x	y	s_{1}	s_{2}	P	
[1	2	1	0	0	6
0	-5	-4	1	0	96
0	9	5	0	1	30

No negative indicators exist and so the maximum has been reached. The solution is:
$x=6, y=0, s_{1}=0, s_{2}=96, P=30$
Exercise 2:

Maximize: $\boldsymbol{P}=.05 \boldsymbol{x}+.09 \boldsymbol{y}+.08 \boldsymbol{z}$
subject to the following constraints:
$x+y+z \leq 150$
$x \leq 75$
$y \leq 75$
$z \leq 75$
The slack equations are:

$$
\begin{array}{rlrl}
x+y+z+s_{1} & & =150 \\
x+s_{2} & & =75 \\
y \quad+s_{3} & =75 \\
z+s_{4} & =75 \\
-.05 x-.09 v-.08 z+P=0 &
\end{array}
$$

The initial tableau is:

x	y	z	s_{1}	s_{2}	s_{3}	s_{4}	${ }_{4} P$	
[1	1	1	1	0	0	0	0	150
1	0	0	0	1	0	0	0	75
0	1	0	0	0	1	0	0	75
0	0	1	0	0	0	1	0	75
-. 05	-09	-08	0	0	0	0	1	0

The smallest non-negative quotient is 75 and so pivot about 1 in row 3:

\boldsymbol{x}
\boldsymbol{y}
\boldsymbol{y}
1

p.c.

150/1, 75/1

x	y	z	s_{1}	s_{2}	s_{3}	s_{4}	P	
1	0	1	1	0	-1	-1	0	75
1	0	0	0	1	0	0	0	75
0	1	0	0	0	1	0	0	75
0	0	1	0	0	0	1	0	75
-05	0	-. 08	0	0	. 09	0	1	6.75

The smallest non-negative quotient is 75 and occurs in rows 1 and 4 . Arbitrarily take 1 in row 4 pivoting purposes:

x	y	z	s_{1}	s_{2}	s_{3}	s_{4}	P	
[1	0	1	1	0	-1	-1	0	75
1	0	0	0	1	0	0	0	75
0	1	0	0	0	1	0	0	75
0	0	1	0	-	0	1	0	75
-05	0	-. 08	0	0	. 09	0	1	6.75
		\uparrow						
		p.c.						
75/1								

The resulting tableau is:

$$
\begin{aligned}
& \begin{array}{llllllll}
\boldsymbol{x} & \boldsymbol{y} & z & s_{1} & s_{2} & s_{3} & s_{4} & \boldsymbol{P}
\end{array} \\
& {\left[\begin{array}{cccccccc|c}
1 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 75 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 75 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 75 \\
\hline-05 & 0 & 0 & 0 & 0 & 09 & 08 & 1 & 12.75
\end{array}\right]}
\end{aligned}
$$

The smallest non-negative quotient is 0 and occurs in row 1 :

\boldsymbol{x}
\boldsymbol{y}
$\left[\begin{array}{ccccccc\|c} & \boldsymbol{z} & \boldsymbol{s}_{1} & \boldsymbol{s}_{2} & \boldsymbol{s}_{3} & \boldsymbol{s}_{\mathbf{4}} & \boldsymbol{P} \\ 1 & 0 & 0 & 1 & 0 & -1 & -1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}\right.$
-05
-0

0/1, 75/1

Pivoting yields the following tableau. Since there are no negative entries in the bottom row, this tableau gives the solution.

$$
\begin{aligned}
& \begin{array}{llllllll}
\boldsymbol{x} & \boldsymbol{y} & \boldsymbol{z} & s_{1} & s_{2} & s_{3} & \boldsymbol{s}_{4} & P
\end{array} \\
& {\left[\begin{array}{cccccccc|c}
1 & 0 & 0 & 1 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 1 & 1 & 0 & 75 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 75 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 75 \\
\hline 0 & 0 & 0 & .05 & 0 & .04 & 03 & 1 & 16.50
\end{array}\right]}
\end{aligned}
$$

$\mathrm{M} x$. income is $\mathbb{R}_{6} 16,500$ when $x=0$ is in stocks, $\boldsymbol{y}=$ Rs $^{2} .75000$ is in bonds, and $z=\$ 75,000$

is in a money market

Exercise 3:
Maximize $f=5 x+10 y$ subject to $\left\{\begin{array}{l}x+y \leq 20 \\ 2 x-y \geq 10 \\ x, y \geq 0\end{array}\right.$
Change the second constraint to a \leq

$$
\left\{\begin{array}{c}
x+y \leq 20 \\
-2 x+y \leq-10 \\
x, y \geq 0
\end{array}\right.
$$

Setup the initial simplex tableau

$$
\left.\begin{array}{cccccc}
x & y & z_{1} & s_{1} & f & \\
{\left[\begin{array}{ccc}
1 & 1 & 1
\end{array} 0\right.} & 0 & 20 \\
-2 & 1 & 0 & 1 & 0 & -10 \\
-5 & -10 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Fliminate the negative entry in the right oolumn:
Look for the "most" negative entry to theleft of the right column. \therefore the first eolumn is the pivot columm. Since there is a pos. ratio, we pivot about the 1 in fow 1 .

$$
\begin{aligned}
& \begin{array}{lllll}
x & y & s_{1} & z_{2} & f
\end{array} \\
& {\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 20 \\
0 & 3 & 2 & 1 & 0 & 30 \\
0 & -5 & 5 & 0 & 1 & 100
\end{array}\right]}
\end{aligned}
$$

The tableau is in standard form. Pivot in the second column and pivot about the 3 in row 2 ,

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 1 / 3 & -1 / 3 & 0 & 10 \\
0 & 1 & 2 / 3 & 1 / 3 & 0 & 10 \\
0 & 0 & 25 / 3 & 5 / 3 & 1 & 150
\end{array}\right]}
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
x \\
x
\end{array} s_{1} \quad s_{2} \quad f \quad l \begin{array}{ccccc}
1 & 1 & 1 & 0 & 0 \\
20 \\
0 & 1 & 2 / 3 & 1 / 3 & 0 \\
10 \\
0 & -5 & 5 & 0 & 1
\end{array}\right] 100\right]\left[\begin{array}{ccccc}
x & y & s_{1} & s_{2} & f \\
{\left[\begin{array}{cccccc}
1 & 0 & 1 / 3 & -1 / 3 & 0 & 10 \\
0 & 1 & 2 / 3 & 1 / 3 & 0 & 10 \\
0 & 0 & 25 / 3 & 5 / 3 & 1 & 150
\end{array}\right]}
\end{array}\right.
$$

The maximum value is 150 when $x=10, y=10$

