Infeasible Solution

In the next example we will illustrate how to identify the infeasible solution using simplex method.

Example

Consider the following problem.
Minimize $200 \mathrm{x}_{1}+300 \mathrm{x}_{2}$
Subject to:

$$
\begin{aligned}
& 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 1200 \\
& \mathrm{x}_{1}+\mathrm{x}_{2} \leq 400 \\
& 2 \mathrm{x}_{1}+\frac{3}{2} \mathrm{x}_{2} \geq 900 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

Solution

Since it is a minimization problem we have to convert it into maximization problem and introduce the slack, surplus and artificial variables.

Minimize $-200 \mathrm{x}_{1}-300 \mathrm{x}_{2}$
Subject to:

$$
\begin{aligned}
2 \mathrm{x}_{1}+3 \mathrm{x}_{2}-\mathrm{S}_{3}+\mathrm{a}_{6} & =1200 \\
\mathrm{x}_{1}+\mathrm{x}_{2}+\quad \mathrm{S}_{4} & =400 \\
2 \mathrm{x}_{1}+\frac{3}{2} \mathrm{x}_{2}-\mathrm{S}_{5}+\mathrm{a}_{7} & =900 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, S_{5}, \mathrm{a}_{6}, & \mathrm{a}_{7} \geq 0
\end{aligned}
$$

Here the a_{6} and a_{7} are the artificial variables. We use two phase method to solve this problem.

Phase I

Maximize $-\mathrm{a}_{6}-\mathrm{a}_{7}$
Subject to:

$$
\begin{aligned}
2 x_{1}+3 x_{2}-S_{3}+a_{6} & =1200 \\
x_{1}+x_{2}+S_{4} & =400 \\
2 x_{1}+\frac{3}{2} x_{2}-S_{5}+a_{7} & =900 \\
x_{1}, x_{2}, S_{3}, S_{4}, S_{5}, a_{6}, & a_{7} \geq 0
\end{aligned}
$$

The calculation of simplex procedures and tables are as follows:

CB	Basic variables	C_{j}	0	0	0	0	0	-1	-1
		XB	x_{1}	x_{2}	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	$\mathrm{~s}_{5}$	a_{6}	a_{7}
-1	a_{6}	1200	2	3	-1	0		0	1
0									
0	$\mathrm{~s}_{4}$	400	1	1	0	1	0	0	1
-1	a_{7}	900	2	$3 / 2$	0	0	-1	0	0

CB	Basic variables	C_{j}	0	0	0	0	0	-1
		XB	x_{1}	x_{2}	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	$\mathrm{~s}_{5}$	a_{7}
0	x_{2}	400	$2 / 3$	1	$-1 / 3$	0	0	0
0	$\mathrm{~s}_{4}$	0	$1 / 3$	0	$1 / 3$	1	0	0
-1	a_{7}	300	1	0	$1 / 2$	0	-1	1

CB	Basic variables	C_{j}	0	0	0	0	0	-1
		XB	x_{1}	x_{2}	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	$\mathrm{~s}_{5}$	a_{7}
0	x_{2}	400	0	1	-1	-2	0	0
0	x_{1}	0	1	0	1	3	0	0
-1	a_{7}	300	0	0	$-1 / 2$	-3	-1	1
	$\mathrm{z}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$	0	0	$1 / 2$	3	1	0	

Note that $\mathrm{z}_{\mathbf{j}}-\mathrm{c}_{\mathbf{j}} \geq 0$ for all the variables but the artificial variable a_{7} is still a basic variable. This situation indicates that the problem has no feasible solution.

Exercises:

Q1. A soft drinks company has a two products viz. Coco-cola and Pepsi with profit of $\$ 2$ and $\$ 1$ per unit. The following table illustrates the labour, equipment and materials to produce per unit of each product. Determine suitable product mix which maximizes the profit using simplex method.

Pepsi Coco-cola Total Resources

Labour

Equipment
Material

3	2
1	2.3
1	1.4

12

Q2. Solve the following linear programming problem using two phase and M method.

Maximize

$$
12 \mathrm{x}_{1}+15 \mathrm{x}_{2}+9 \mathrm{x}_{3}
$$

Subject to:

$$
\begin{aligned}
& 8 x_{1}+16 x_{2}+12 x_{3} \leq 250 \\
& 4 x_{1}+8 x_{2}+10 x_{3} \geq 80 \\
& 7 x_{1}+9 x_{2}+8 x_{3}=105 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Q3. Solve the following linear programming problem using simplex method.
Maximize

$$
3 \mathrm{x}_{1}+2 \mathrm{x}_{2}
$$

Subject to:

$$
\begin{aligned}
& \mathrm{x}_{1}-\mathrm{x}_{2} \leq 1 \\
& \mathrm{x}_{1}+\mathrm{x}_{2} \geq 3 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

Q4. Solve the following linear programming problem using simplex method.

Maximize

$$
\mathrm{x}_{1}+\mathrm{x}_{2}
$$

Subject to:

$$
\begin{array}{ll}
-2 \mathrm{x}_{1}+\mathrm{x}_{2} & \leq 1 \\
\mathrm{x}_{1} & \leq 2 \\
\mathrm{x}_{1}+\mathrm{x}_{2} & \leq 3 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
\end{array}
$$

Q5. Solve the following linear programming problem using simplex method.
Maximize

$$
\mathrm{P}=3 \mathrm{x}_{1}+4 \mathrm{x}_{2}+\mathrm{x}_{3}
$$

Subject to:

$$
\begin{aligned}
& \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3} \leq 6 \\
& 2 \mathrm{x}_{1} \quad+2 \mathrm{x}_{3} \leq 4 \\
& 3 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \leq 9 \\
& \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
\end{aligned}
$$

Q_{1}. Coco-Cola $=20 / 9$, Pepsi $=161 / 90$
Maximum Profit $=\$ 6.23$
$\mathrm{Q}_{2} . \mathrm{x}_{1}=6, \mathrm{x}_{2}=7, \mathrm{x}_{3}=0$
Maximum Profit $=177$
Q3. Unbounded Solution
$Q_{4} \cdot x_{1}=2, x_{2}=1$ or $x_{1}=2 / 3, x_{2}=7 / 3$
Maximum Profit $=3$.
Q5. $\mathrm{x}_{1}=2, \mathrm{x}_{2}=2, \mathrm{x}_{3}=0$
Maximum $\mathrm{P}=14$

