Infeasible Solution

In the next example we will illustrate how to identify the infeasible solution using simplex method.

Example

Consider the following problem.

Minimize
$$200 x_1 + 300 x_2$$

Subject to:

$$2 x_1 + 3 x_2 \ge 1200$$

$$x_1 + x_2 \le 400$$

$$2 x_1 + \frac{3}{2} x_2 \ge 900$$

$$x_1, x_2 \ge 0$$

Solution

Since it is a minimization problem we have to convert it into maximization problem and introduce the slack, surplus and artificial variables.

Minimize
$$-200 x_1 - 300 x_2$$

Subject to:

$$2 x_1 + 3 x_2 - S_3 + a_6 = 1200$$

$$x_1 + x_2 + S_4 = 400$$

$$2 x_1 + \frac{3}{2} x_2 - S_5 + a_7 = 900$$

$$x_1, x_2, S_3, S_4, S_5, a_6, a_7 \ge 0$$

Here the a_6 and a_7 are the artificial variables. We use two phase method to solve this problem.

Phase I

١

Maximize
$$-a_6 - a_7$$

Subject to:

$$2 x_1 + 3 x_2 - S_3 + a_6 = 1200$$

$$x_1 + x_2 + S_4 = 400$$

$$2 x_1 + \frac{3}{2} x_2 - S_5 + a_7 = 900$$

$$x_1, x_2, S_3, S_4, S_5, a_6, a_7 \ge 0$$

The calculation of simplex procedures and tables are as follows:

СВ	Basic	Cj	0	0	0	0	0	-1	-1
	variables	XB	X ₁	X2	S ₃	S ₄	S ₅	a ₆	a ₇
-1	a_6	1200	2	3	-1	0	0	1	0
0	S ₄	400	1	1	0	1	0	0	1
-1	a ₇	900	2	3/2	0	0	-1	0	0
		z _j -c _j	-4	-9/2	1	0	1	0	0

СВ	Basic	Cj	0	0	0	0	0	-1
	variables	XB	X ₁	X2	S ₃	S ₄	S ₅	a ₇
			0.40		1.10			
0	X_2	400	2/3	I	-1/3	0	0	0
0	S ₄	0	1/3	0	1/3	1	0	0
-1	a ₇	300	1	0	1/2	0	-1	1
	•	z _j -c _j	-1	0	-1/2	0	1	0

CB	Basic	Cj	0	0	0	0	0	-1
	variables	XB	X ₁	X2	S ₃	S ₄	S ₅	a ₇
					_	_	_	_
0	X_2	400	0	1	-1	-2	0	0
0	X_1	0	1	0	1	3	0	0
-1	a ₇	300	0	0	-1/2	-3	-1	1
		z _j -c _j	0	0	1/2	3	1	0

Note that z_j - $c_j \ge 0$ for all the variables but the artificial variable a_7 is still a basic variable. This situation indicates that the problem has no feasible solution.

Exercises:

Q1. A soft drinks company has a two products viz. Coco-cola and Pepsi with profit of \$2 and \$1 per unit. The following table illustrates the labour, equipment and materials to produce per unit of each product. Determine suitable product mix which maximizes the profit using simplex method.

	Pepsi	Coco-cola	Total Resources
Labour	2	2	12
	1	2.3	6.9
Equipment	1	1.4	
Material			4.9

Q2. Solve the following linear programming problem using two phase and M method.

Maximize
$$12x_1 + 15x_2 + 9x_3$$
 Subject to:
$$8x_1 + 16x_2 + 12x_3 \le 250$$

$$4x_1 + 8x_2 + 10x_3 \ge 80$$

$$7x_1 + 9x_2 + 8x_3 = 105$$

$$x_1, x_2, x_3 \ge 0$$

Q3. Solve the following linear programming problem using simplex method.

Maximize
$$3x_1 + 2x_2$$
Subject to:
$$x_1 - x_2 \le 1$$
$$x_1 + x_2 \ge 3$$
$$x_1, x_2 \ge 0$$

Q4. Solve the following linear programming problem using simplex method.

Maximize

$$x_1 + x_2$$

Subject to:
 $-2x_1 + x_2 \le 1$

$$x_1 \le 2$$

 $x_1 + x_2 \le 3$
 $x_1, x_2, x_3 \ge 0$

Q5. Solve the following linear programming problem using simplex method.

Maximize

$$P = 3x_1 + 4x_2 + x_3$$

Subject to:

$$\begin{array}{ll} x_1 + 2x_2 + x_3 \le 6 \\ 2x_1 & +2x_3 \le 4 \\ 3x_1 + x_2 + x_3 \le 9 \\ x_1, x_2, x_3 \ge 0 \end{array}$$

$$Q_1$$
. Coco-Cola = 20/9, Pepsi = 161/90

Maximum Profit = \$ 6.23

$$Q_2$$
. $x_1 = 6$, $x_2 = 7$, $x_3 = 0$

Maximum Profit = 177

Q₃. Unbounded Solution

$$Q_4$$
. $x_1 = 2$, $x_2 = 1$ or $x_1 = 2/3$, $x_2 = 7/3$

Maximum Profit = 3.

Q5.
$$x_1 = 2$$
, $x_2 = 2$, $x_3 = 0$

Maximum P = 14