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Can light be spatially confined and transported in free space without angular spread? 
Although the wave nature of light precludes the existence of such an idealization, light 
can take the form of beams that come as close as possible to spatially localized and 
nondiverging waves. 

A plane wave and a spherical wave represent the two opposite extremes of angular 
and spatial confinement. The wavefront normals (rays) of a plane wave are parallel to 
the direction of the wave so that there is no angular spread, but the energy extends 
spatially over the entire space. The spherical wave, on the other hand, originates from 
a single point, but its wavefront normals (rays) diverge in all directions. 

Waves with wavefront normals making small angles with the z axis are called 
paraxial waves. They must satisfy the paraxial Helmholtz equation derived in Sec. 2.2C. 
An important solution of this equation that exhibits the characteristics of an optical 
beam is a wave called the Gaussian beam. The beam power is principally concentrated 
within a small cylinder surrounding the beam axis. The intensity distribution in any 
transverse plane is a circularly symmetric Gaussian function centered about the beam 
axis. The width of this function is minimum at the beam waist and grows gradually in 
both directions. The wavefronts are approximately planar near the beam waist, but they 
gradually curve and become approximately spherical far from the waist. The angular 
divergence of the wavefront normals is the minimum permitted by the wave equation 
for a given beam width. The wavefront normals are therefore much like a thin pencil of 
rays. Under ideal conditions, the light from a laser takes the form of a Gaussian beam. 

An expression for the complex amplitude of the Gaussian beam is derived in Sec. 
3.1 and a detailed discussion of its physical properties (intensity, power, beam radius, 
angular divergence, depth of focus, and phase) is provided. The shaping of Gaussian 
beams (focusing, relaying, collimating, and expanding) by the use of various opti- 
cal components is the subject of Sec. 3.2. A family of optical beams called Hermite- 
Gaussian beams, of which the Gaussian beam is a member, is introduced in Sec. 3.3. 
Laguerre-Gaussian and Bessel beams are discussed in Sec. 3.4. 

3.1 THE GAUSSIAN BEAM 

A. Complex Amplitude 

The concept of paraxial waves was introduced in Sec. 2.2C. A paraxial wave is a plane 
wave e -jkz (with wavenumber k = 2n/A and wavelength A) modulated by a complex 
envelope Ah) that is a slowly varying function of position (see Fig. 2.2-5). The complex 
amplitude is 

U(r) = A(r) exp( -jkz). (3.1-1) 

The envelope is assumed to be approximately constant within a neighborhood of size A, 
so that the wave is locally like a plane wave with wavefront normals that are paraxial 
rays. 
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For the complex amplitude U(r) to satisfy the Helmholtz equation, V2U + k2U = 0, 
the complex envelope A(r) must satisfy the paraxial Helmholtz equation (2.2-22) 

v;A -j2k; =0, (3.1-2) 

where V; = J2/Jx2 + a2/~y2 is the transverse part of the Laplacian operator. One 
simple solution to the paraxial Helmholtz equation provides the paraboloidal wave for 
which 

p2=.X2+y2 (3.1-3) 

(see Exercise 2.2-2) where A, is a constant. The paraboloidal wave is the par-axial 
approximation of the spherical wave U(r) = (A,/r) exp(-jkr) when x and y are much 
smaller than z (see Sec. 2.2B). 

Another solution of the paraxial Helmholtz equation provides the Gaussian beam. It 
is obtained from the paraboloidal wave by use of a simple transformation. Since the 
complex envelope of the paraboloidal wave (3.1-3) is a solution of the paraxial 
Helmholtz equation (3.1-2), a shifted version of it, with z - ,$ replacing z where 5 is a 
constant, 

4 
A(r) = - 

P2 
4(z) exp [ 1 -jk- 

h?(z) ’ 
4.4 = z - 6, (3.1-4) 

is also a solution. This provides a paraboloidal wave centered about the point z = 5 
instead of z = 0. When ,$ is complex, (3.1-4) remains a solution of (3.1-2), but it 
acquires dramatically different properties. In particular, when 6 is purely imaginary, 
say 5 = -jz, where za is real, (3.1-4) gives rise to the complex envelope of the 
Gaussian beam 

The parameter z. is known as the Rayleigh range. 
To separate the amplitude and phase of this complex envelope, we write the 

complex function l/q(z) = l/(z + jz,) in terms of its real and imaginary parts by 
defining two new real functions R(z) and W(z), such that 

1 1 .A -=-- 
4-4 R(z) hV2(z) 

(3.1-6) 

It will be shown subsequently that W(z) and R(z) are measures of the beam width and 
wavefront radius of curvature, respectively. Expressions for W(z) and R(z) as func- 
tions of z and z. are provided in (3.1-8) and (3.1-9). Substituting (3.1-6) into (3.1-5) 
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and using (3.1-l), an expression for the complex amplitude U(r) of the Gaussian beam 
is obtained: 

l(z) = tan-‘: 

l/2 

(3.1-7) 
Gaussian-Beam 

Complex Amplitude 

(3.1-8) 

(3.1-g) 

(3.1-10) 

(3.1-l 1) 
Beam Parameters 

A new constant A, = A,/jz, has been defined for convenience. 
The expression for the complex amplitude of the Gaussian beam is central to this 

chapter. It contains two parameters, A, and zo, which are determined from the 
boundary conditions. All other parameters are related to the Rayleigh range z. and 
the wavelength h by (3.1-8) to (3.1-11). 

B. Properties 

Equations (3.1-7) to (3.1-11) will now be used to determine the properties of the 
Gaussian beam. 

Intensity 
The optical intensity I(r) = lU(r)12 is a function of the axial and radial distances z and 
p = (x2 + y2)‘/2, 

I(P, 4 = I, [ j$JexP[ -j&-j. (3.142) 

where I, = )Ao12. At each value of z the intensity is a Gaussian function of the radial 
distance p. This is why the wave is called a Gaussian beam. The Gaussian function has 
its peak at p = 0 (on axis) and drops monotonically with increasing p. The width W(z) 
of the Gaussian distribution increases with the axial distance z as illustrated in Fig. 
3.1-1. 
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Figure 3.1-l The normalized beam intensity I/I,, as a function of the radial distance p at 
different axial distances: (a) z = 0; (b) z = zO; (c) z = 22,,. 

On the beam axis (p = 0) the intensity 

wo 2 
qo, z) = I, - 

[ I 
IO 

= 

W(z) 1 + wzo)2 

(3.1-13) 

has its maximum value IO at z = 0 and drops gradually with increasing z, reaching half 
its peak value at z = +zo (Fig. 3.1-2). When lzl x=- zo, I(0, z) = Ioz~/z2, so that the 
intensity decreases with the distance in accordance with an inverse-square law, as for 
spherical and paraboloidal waves. The overall peak intensity I(O,O> = IO occurs at the 
beam center (z = 0, p = 0). 

-z0 0 20 z 

Figure 3.1-2 The normalized beam intensity I/I, at points on the beam axis (p = 0) as a 
function of 2. 
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Power 
The total optical power carried by the beam is the integral of the optical intensity over 
a transverse plane (say at a distance z), 

P = jmI(p, z&p dp, 
0 

which gives 

p = g&rw,z). (3.1-14) 

The result is independent of z, as expected. Thus the beam power is one-half the peak 
intensity times the beam area. Since beams are often described by their power P, it is 
useful to express I, in terms of P using (3.1-14) and to rewrite (3.1-12) in the form 

2P 
I(w) = 7rW2( 2) exp [ 2P2 -- W2(z) 1 - (3.1-15) 

Beam Intensity 

The ratio of the power carried within a circle of radius p. in the transverse plane at 
position z to the total power is 

1 
/ 

PO 2d 
PO 

I(P, z)2~p dp = 1 - exp - - [ 1 W’(z) * (3.1-16) 

The power contained within a circle of radius p. = W(z) is approximately 86% of the 
total power. About 99% of the power is contained within a circle of radius l.SW(z). 

Beam Radius 
Within any transverse plane, the beam intensity assumes its peak value on the beam 
axis, and drops by the factor l/e2 = 0.135 at the radial distance p = W(z). Since 86% 
of the power is carried within a circle of radius W(z), we regard W(z) as the beam 
radius (also called the beam width). The rms width of the intensity distribution is 
u = iIV(z> (see Appendix A, Sec. A.2, for the different definitions of width). 

The dependence of the beam radius on z is governed by (3.1-81, 

I I 

W(z)=Wol+ 4 . [ 
2 l/2 

( 11 ZO 

(3.1-17) 
Beam Radius 

It assumes its minimum value IV0 in the plane z = 0, called the beam waist. Thus IV0 is 
the waist radius. The waist diameter 2Wo is called the spot size. The beam radius 
increases gradually with z, reaching CW, at z = zo, and continues increasing mono- 
tonically with z (Fig. 3.1-3). For z B- z. the first term of (3.1-17) may be neglected, 
resulting in the linear relation 

W(z) = 
WO 
-z = eoz, 
ZO 

(3.1-18) 
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-2 
0 0 zO 2 

Figure 3.1-3 The beam radius W(z) has its minimum value W,, at the waist (z = 01, reaches 
$fW, at 2 = +zO, and increases linearly with z for large z. 

where 8, = WO/zO. Using (3.1-ll), we can also write 

A 
8, = - 

7rw() - 
(3.149) 

Beam Divergence 
Far from the beam center, when z B zo, the beam radius increases approximately 
linearly with z, defining a cone with half-angle 8,. About 86% of the beam power is 
confined within this cone. The angular divergence of the beam is therefore defined by 
the angle 

2 A 

I 
(j,= -- 

7T 2w; 
(3.1-20) 

Divergence Angle 

The beam divergence is directly proportional to the ratio between the wavelength A 
and the beam-waist diameter 2Wo. If the waist is squeezed, the beam diverges. To 
obtain a highly directional beam, therefore, a short wavelength and a fat beam waist 
should be used. 

Depth of Focus 
Since the beam has its minimum width at z = 0, as shown in Fig. 3.1-3, it achieves its 
best focus at the plane z = 0. In either direction, the beam gradually grows “out of 
focus.” The axial distance within which the beam radius lies within a factor fi of its 
minimum value (i.e., its area lies within a factor of 2 of its minimum) is known as the 
depth of focus or confocal parameter (Fig. 3.1-4). It can be seen from (3.1-17) that the 

Figure 3.1-4 The depth of focus of a Gaussian beam. 



THE GAUSSIAN BEAM 87 

Figure 3.1-5 l(z) is the phase retardation of the Gaussian beam relative to a uniform plane 
wave at points on the beam axis. 

depth of focus is twice the Rayleigh range, 

27rw; 

L--l 22,= - A * (3.1-21) 
Depth of Focus 

The depth of focus is directly proportional to the area of the beam at its waist, and 
inversely proportional to the wavelength. Thus when a beam is focused to a small spot 
size, the depth of focus is short and the plane of focus must be located with greater 
accuracy. A small spot size and a long depth of focus cannot be obtained simultane- 
ously unless the wavelength of the light is short. For A = 633 nm (the wavelength of a 
He-Ne laser line), for example, a spot size 2W, = 2 cm corresponds to a depth of focus 
220 = 1 km. A much smaller spot size of 20 ,um corresponds to a much shorter depth 
of focus of 1 mm. 

Phase 
The phase of the Gaussian beam is, from (3.1-71, 

kP2 
CP(P,~ = kz - LX4 + - 

2R(z) ’ 
(3.1-22) 

On the beam axis (p = 0) the phase 

cp(O, z) = kz - J(z) (3.1-23) 

comprises two components. The first, kz, is the phase of a plane wave. The second 
represents a phase retardation l(z) given by (3.1-10) which ranges from -7~/2 at 
z = - 03 to +rr/2 at z = 03, as illustrated in Fig. 3.1-5. This phase retardation 
corresponds to an excess delay of the wavefront in comparison with a plane wave or a 
spherical wave (see also Fig. 3.1-8). The total accumulated excess retardation as the 
wave travels from z = --oo to z = 00 is 7r. This phenomenon is known as the Guoy 
effect.? 

Wavefronts 
The third component in (3.1-22) is responsible for wavefront bending. It represents the 
deviation of the phase at off-axis points in a given transverse plane from that at the 

‘See, for example, A. E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986. 
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Figure 3.1-6 The radius of curvature R(z) of the 
line is the radius of curvature of a spherical wave. 

wavefronts of a Gaussian beam. The dashed 

Figure 3.1-7 Wavefronts of a Gaussian beam. 

axial point. The surfaces of constant phase satisfy k[ z + p*/2R(z)] - l(z) = 27rq. 
Since 4’(z) and R(z) are relatively slowly varying, they are approximately constant at 
points within the beam radius on each wavefront. We may therefore write z + p2/2R 
= qh + &/27r, where R = R(Z) and l = l(z). This is precisely the equation of a 
paraboloidal surface of radius of curvature R. Thus R(z), plotted in Fig. 3.1-6, is the 
radius of curvature of the wavefront at position z on the beam axis. 

As illustrated in Fig. 3.1-6, the radius of curvature R(z) is infinite at z = 0, 
corresponding to planar wavefronts. It decreases to a minimum value of 22, at z = zo. 
This is the point at which the wavefront has the greatest curvature (Fig. 3.1-7). The 
radius of curvature subsequently increases with further increase of z until R(z) = z 
for z z+ zo. The wavefront is then approximately the same as that of a spherical wave. 
For negative z the wavefronts follow an identical pattern, except for a change in sign. 
We have adopted the convention that a diverging wavefront has a positive radius of 
curvature, whereas a converging wavefront has a negative radius of curvature. 
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(a) - 

(b) 

Figure 3.1-8 Wavefronts of (a) a uniform plane wave; (b) a spherical wave; (c) a 
Gaussian beam. At points near the beam center, the Gaussian beam resembles a plane 
wave. At large z the beam behaves like a spherical wave except that the phase is retarded 
by 90” (shown in this diagram by a quarter of the distance between two adjacent 
wavefronts). 

EXERCISE 3.1-l 

Parameters of a Gaussian Laser Beam. A 1-mW He-Ne laser produces a Gaussian 
beam of wavelength A = 633 nm and a spot size 2Wa = 0.1 mm. 
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(a> Determine the angular divergence of the beam, its depth of focus, and its diameter at 
2 = 3.5 x lo5 km ( approximately the distance to the moon). 

(b) What is th e radius of curvature of the wavefront at z = 0, z = ta, and z = 2z,? 
(c) What is the optical intensity (in W/cm2) at the beam center (z = 0, p = 0) and at the 

axial point z = z a? Compare this with the intensity at z = zc of a 100-W spherical 
wave produced by a small isotropically emitting light source located at z = 0. 

EXERCISE 3.1-2 

Validity of the Paraxial Approximation for a Gaussian Beam. The complex envelope 
A(r) of a Gaussian beam is an exact solution of the paraxial Helmholtz equation (3.1-2), 
but its corresponding complex amplitude U(r) = A(r) exp( -jkz) is only an approximate 
solution of the Helmholtz equation (2.2-7). This is because the paraxial Helmholtz 
equation is itself approximate. The approximation is satisfactory if the condition (2.2-20) is 
satisfied. Show that if the divergence angle 8, of a Gaussian beam is small (0, << 11, the 
condition (2.2-20) for the validity of the paraxial Helmholtz equation is satisfied. 

Parameters Required to Characterize a Gaussian Beam 
Assuming that the wavelength A is known, how many parameters are required to 
describe a plane wave, a spherical wave, and a Gaussian beam? The plane wave is 
completely specified by its complex amplitude and direction. The spherical wave is 
specified by its amplitude and the location of its origin. The Gaussian beam, in 
contrast, is characterized by more parameters- its peak amplitude [the parameter A, 
in (3.1-7)], its direction (the beam axis), the location of its waist, and one additional 
parameter: the waist radius IV0 or the Rayleigh range zo, for example. Thus, if the 
beam peak amplitude and the axis are known, two additional parameters are necessary. 

If the complex number q(z) = z + jz, is known, the distance z to the beam waist 
and the Rayleigh range z. are readily identified as the real and imaginary parts of 
q(z). As an example, if the q-parameter is 3 + j4 cm at some point on the beam axis, 
we conclude that the beam waist lies at a distance z = 3 cm to the left of that point 
and that the depth of focus is 22, = 8 cm. The waist radius IV0 may be determined by 
use of (3.1-11). The q-parameter q(z) is therefore sufficient for characterizing a 
Gaussian beam of known peak amplitude and beam axis. The linear dependence of the 
q-parameter on z permits us to readily determine q at all points, given q at a single 
point. If q(z) = q1 and q(z + d) = q2, then q2 = q1 + d. In the present example, at 
z = 13 cm, q = 13 + j4. 

If the beam width W(z) and the radius of curvature R(z) are known at an arbitrary 
point on the axis, the beam can be identified completely by solving (3.1-g), (3.1-9), and 
(3.1-11) for z, zo, and Wo. Alternatively, the q-parameter may be determined from 
W(z) and R(Z) using the relation, l/q(z) = l/R(z) - jh/[rrW2(z)], from which the 
beam is identified. 

EXERCISE 3.1-3 

Determination of a Beam with Given Width and Curvature. Assuming that the width 
W and the radius of curvature R of a Gaussian beam are known at some 
beam axis (Fig. 3.1-9), show that the beam waist is located at a distance 

point on the 

R 
Z= 

1 + (AR,‘dV2)2 
(3.1-24) 
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Figure 3.1-9 Given W and R, determine z and 

to the left and the waist radius is 

W 
w, = 

[l + (TW~,AR)~]“~’ 
(3.1-25) 

EXERCISE 3.1-4 

Determination of the Width and Curvature at One Point Given the Width and 
Curvature at Another Point. Assume that the radius of curvature and the width of a 
Gaussian beam of wavelength A = 1 pm at some point on the beam axis are RI = 1 m and 
WI = 1 mm, respectively (Fig. 3.1-10). Determine the beam width and the radius of 
curvature at a distance d = 10 cm to the right. 

Figure 3.1-10 Given R,, W,, and d, determine R, 
and W,. 

EXERCISE 3. I-5 

Identification of a Beam with Known Curvatures at Two Points. A Gaussian beam 
has radii of curvature R, and R, at two points on the beam axis separated by a distance d, 
as illustrated in Fig. 3.1-11. Verify that the location of the beam center and its depth of 

Figure 3.1-11 Given R,, R,, and d, determine zl, 
2.2, zo, and Wo. 
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focus may be determined from the relations 

-d(R, - d) 
z - 

1 - R, - R, - 2d 

z; = 
-d(R, + d)(R, - d)(R, -RI - d) 

(R2 -R, - 2d)2 

l/2 W,=hz, . ( 1 7r 

(3.1-26) 

(3.1-27) 

3.2 TRANSMISSION THROUGH OPTICAL COMPONENTS 

The effects of different optical components on a Gaussian beam are discussed in this 
section. We show that if a Gaussian beam is transmitted through a set of circularly 
symmetric optical components aligned with the beam axis, the Gaussian beam remains a 
Gaussian beam as long as the overall system maintains the paraxial nature of the wave. 
Only the beam waist and curvature are altered so that the beam is only reshaped. The 
results of this section are important in the design of optical instruments in which 
Gaussian beams are used. 

A. Transmission Through a Thin Lens 

The complex amplitude transmittance of a thin lens of focal length f is proportional to 
exp(jkp2/2f) (see Sec. 2.4B). When a Gaussian beam crosses the lens its complex 
amplitude, given in (3.1-7), is multiplied by this phase factor. As a result, its wavefront 
is bent, but the beam radius is not altered. 

A Gaussian beam centered at z = 0 with waist radius W0 is transmitted through a 
thin lens located at a distance z, as illustrated in Fig. 3.2-l. The phase at the plane of 
the lens is kz + kp2/2 R - 5, where R = R(z) and 5 = l(z) are given by (3.1-9) and 
(3.1-lo), respectively. The phase of the transmitted wave is altered to 

2 2 2 

kz+k+-kP=kz+k+, 
2.f 

(3.2-l) 

Figure 3.2-l Transmission of a Gaussian beam through a thin lens. 
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where 

1 1 1 
-=---. 
R’ R f 

(3.2-2) 

We conclude that the transmitted wave is itself a Gaussian beam with width W’ = W 
and radius of curvature R’, where R’ satisfies the imaging equation l/R - l/R’ = l/f. 
Note that R is positive since the wavefront of the incident beam is diverging and R’ is 
negative since the wavefront of the transmitted beam is converging. 

The parameters of the emerging beam may be determined by referring to Exercise 
3.1-3, in which the parameters of a Gaussian beam were determined from its width and 
curvature at a given point. By use of (3.1-25) and (3.1-24) the waist radius of the new 
beam is 

W 
wf-j = 

[l + (TWZ/AR’)~]~‘~’ 

and the center is located a distance 

R’ 
-2’ = 

1 + (AR’/aW’)’ 

(3.2-3) 

(3.2-4) 

from the lens. A minus sign is used in (3.2-4) since the waist lies to the right of the lens. 
Substituting R = z[l + (z,/z>~] and W = W&l + (z/z,>~]‘/~ into (3.2-2) to (3.2-4), 
the following expressions, which relate the parameters of the two beams, are obtained 
(Fig. 3.2-1): 

Waist radius wo’ = MW, 

Waist location (Z’-f) =iw(z-f) 

I Depth of focus 221, = M2(2z()) 

ZO r= - 
z-f’ 

f 
Mr = ~ 

I I Z- f’ 
(3.2-9a) 

Parameter Transformation 
by a Lens 

Magnification 

(3.2-5) 

(3.2-6) 

(3.2-7) 

(3.2-8) 

(3.2-9) 

The magnification factor M plays an important role. The beam waist is magnified by 
M, the beam depth of focus is magnified by M2, and the angular divergence is minified 
by the factor M. 

Limit of Ray Optics 
Consider the limiting case in which (z - f) s=- zo, so that the lens is well outside the 
depth of focus of the incident beam (Fig. 3.2-2). The beam may then be approximated 
by a spherical wave, and the parameter r ==K 1 so that M = Mr [see (3.2-9a)]. Thus 
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Figure 3.2-2 Beam imaging in the ray-optics limit. 

(3.25) to (3.2-9a) reduce to 

Wd = MW,, (3.2-10) 

1 1 1 
-+--“- 
zr z f 

(3.2-11) 

(3.2-12) 

Equations (3.2-10) to (3.2-12) are precisely the relations provided by ray optics for the 
location and size of a patch of light of diameter 2W, located a distance z to the left of 
a thin lens (see Sec. 1.20 The magnification factor Mr is that based on ray optics. 
Since (3.2-9) provides that M < M,., the maximum magnification attainable is the 
ray-optics magnification Mr. As r2 increases, the deviation from ray optics grows and 
the magnification decreases. Equations (3.2-10) to (3.2-12) also correspond to the 
results obtained from wave optics for the focusing of a spherical wave in the par-axial 
approximation (see Sec. 2.4B). 

B. Beam Shaping 

A lens, or sequence of lenses, may be used to reshape a Gaussian beam without 
compromising its Gaussian nature. 

Beam Focusing 
If a lens is placed at the waist of a Gaussian beam, as shown in Fig. 3.2-3, the 
parameters of the transmitted Gaussian beam are determined by substituting t = 0 in 

Figure 3.2-3 Focusing a beam with a lens at the beam waist. 
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(3.2-5) to (3.2-9a). The transmitted beam is then focused to a waist radius Wd at a 
distance z I given by 

Wd = 
0 

[l + (zW,f) ] 

2 l/2 
0 

f 
z’ = 1 + (f/zo)2 * 

(3.2-13) 

(3.2-14) 

If the depth of focus of the incident beam 22, is much longer than the focal length 
f of the lens (Fig. 3.2-4), then Wd = ( f/zo)Wo. Using z. = ,rrWt/A, we obtain 

Wd = --&f = Oaf (3.2-15) 

z’=f. (3.2-16) 

The transmitted beam is then focused at the lens’ focal plane as would be expected for 
parallel rays incident on a lens. This occurs because the incident Gaussian beam is well 
approximated by a plane wave at its waist. The spot size expected from ray optics is, of 
course, zero. In wave optics, however, the focused waist radius Wd is directly propor- 
tional to the wavelength and the focal length, and inversely proportional to the radius 
of the incident beam. In the limit h --) 0, the spot size does indeed approach zero in 
accordance with ray optics. 

In many applications, such as laser scanning, laser printing, and laser fusion, it is 
desirable to generate the smallest possible spot size. It is clear from (3.2-15) that this 
may be achieved by use of the shortest possible wavelength, the thickest incident beam, 
and the shortest focal length. Since the lens should intercept the incident beam, its 
diameter D must be at least ZW,. Assuming that D = 2Wo, the diameter of the 
focused spot is given by 

1 

2W,’ 
f 

F#= 07 (3.2-17) 
7r Focused Spot Size 

where F# is the F-number of the lens. A microscope objective with small F-number is 
often used. Since (3.2-E) and (3.2-16) are approximate, their validity must always be 
confirmed before use. 

Figure 3.2-4 Focusing a collimated beam. 
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EXERCISE 3.2- 7 

6eam Relaying. A Gaussian beam of radius W, and wavelength A is repeatedly focused 
by a sequence of identical lenses, each of focal length f and separated by distance d (Fig. 
3.2-5). The focused waist radius is equal to the incident waist radius, i.e., Wu’ = W,. Using 
(3.2-6), (3.2-9), and (3.2-9a) show that this condition can arise only if the inequality d I 4f 
is satisfied. Note that this is the same condition of ray confinement for a sequence of lenses 
derived in Sec. 1.4D using ray optics. 

i--d-i 
Figure 3.2-5 Beam relaying. 

EXERCISE 3.2-2 

Beam CoMmation. A Gaussian beam is transmitted through a thin lens of focal 
length f. 

(a) Show that the locations of the waists of the incident and transmitted beams, .z and z’, 
are related by 

2’ ---I= z/f-l 
f G/f - Q2 + h/f I2 * 

This relation is plotted in Fig. 3.2-6. 

(3.2-l 8) 

Figure 3.2-6 Relation between the waist locations of the incident and transmitted beams. 
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(b) The beam is collimated by making the location of the new waist z’ as distant as 
possible from the lens. This is achieved by using the smallest ratio z,,/f (short depth of 
focus and long focal length). For a given ratio zc/f, show that the optimal value of z 
for collimation is 2 = f + zo. 

(c) If A = 1 pm, z. = 1 cm and f = 50 cm, determine the optimal value of z for 
collimation, and the corresponding magnification M, distance z’, and width IV////////////////////////////////////// of the 
collimated beam. 

EXERCISE 3.2-3 

Beam Expansion. A Gaussian beam is expanded and collimated using two lenses of 
focal lengths fi and f2, as illustrated in Fig. 3.2-7. Parameters of the initial beam (Wo, zo) 
are modified by the first lens to (IV,,“, zC;) and subsequently altered by the second lens to 
(W’d, 26). The fi rs t 1 ens, which has a short focal length, serves to reduce the depth of focus 
2z{ of the beam. This prepares it for collimation by the second lens, which has a long focal 
length. The system functions as an inverse Keplerian telescope. 

Figure 3.2-7 Beam expansion using a two-lens system. 

(a) Assuming that fr < z and z - fi =2> zo, use the results of Exercise 3.2-2 to determine 
the optimal distance d between the lenses such that the distance z’ to the waist of the 
final beam is as large as possible. 

(b) Determine an expression for the overall magnification M = Wa’/Wo of the system. 

C. Reflection from a Spherical Mirror 

We now examine the reflection of a Gaussian beam from a spherical mirror. Since the 
complex amplitude reflectance of the mirror is proportional to exp( -$p’/R>, where 
by convention R > 0 for convex mirrors and R < 0 for concave mirrors, the action of 
the mirror on a Gaussian beam of width IV1 and radius of curvature RI is to reflect the 
beam and to modify its phase by the factor -kp2/R, keeping its radius unaltered. 
Thus the reflected beam remains Gaussian, with parameters IV2 and I?, given by 

iv2 = w, (3.2-19) 

1 1 2 
-=-++ . 
R2 4 R 

(3.2-20) 

Equation (3.2-20) is the same as (3.2-2) if f = -R/2. Thus the Gaussian beam is 
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(a) (b) 

Figure 3.2-8 Reflection of a Gaussian beam of curvature R, from a mirror of curvature R: (a> 
R = 03; (b)R, = 03; (c) R, = -R. The dashed curves show the effects of replacing the mirror by 
a lens of focal length f = -R/2. 

modified in precisely the same way as by the lens, except for a reversal of the direction 
of propagation. 

Three special cases (illustrated in Fig. 3.2-8) are of interest: 

n If the mirror is planar, i.e., R = 03, then R, = R,, so that the mirror reverses the 
direction of the beam without altering its curvature, as illustrated in Fig. 3.2-8(a). 

. If R, = 00, i.e., the beam waist lies on the mirror, then R, = R/2. If the mirror is 
concave (R < 0), R, < 0, so that the reflected beam acquires a negative curva- 
ture and the wavefronts converge. The mirror then focuses the beam to a smaller 
spot size, as illustrated in Fig. 3.2-8(b). 

n If R, = -R, i.e., the incident beam has the same curvature as the mirror, then 
R, = R. The wavefronts of both the incident and reflected waves coincide with 
the mirror and the wave retraces its path as shown in Fig. 3.2-8(c). This is 
expected since the wavefront normals are also normal to the mirror, so that the 
mirror reflects the wave back onto itself. In the illustration in Fig. 3.2-8(c) the 
mirror is concave (R < 0); the incident wave is diverging (R, > 0) and the 
reflected wave is converging (R, < 0). 

EXERCISE 3.2-4 

Variable-Reflectance Mirrors. A spherical mirror of radius R has a variable intensity 
reflectance characterized by S’(p) = Iy(p)12 = exp( -2p2/Wz), which is a Gaussian func- 
tion of the radial distance p. The reflectance is unity on axis and falls by a factor l/e2 
when p = W,. Determine the effect of the mirror on a Gaussian beam with radius of 
curvature R, and beam radius WI at the mirror. 

*D. Transmission Through an Arbitrary Optical System 

In the par-axial approximation, an optical system is completely characterized by the 
2 x 2 ray-transfer matrix relating the position and inclination of the transmitted ray to 
those of the incident ray (see Sec. 1.4). We now consider how an arbitrary paraxial 
optical system, characterized by a matrix M of elements (A, B, C, D), modifies a 
Gaussian beam (Fig. 3.2-9). 
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Figure 3.2-9 Modification of a Gaussian beam by an arbitrary paraxial system described by an 
ABCD matrix. 

The ABCD Law 
The q-parameters, q1 and q2, of the incident and transmitted Gaussian beams at the 
input and output planes of a par-axial optical system described by the (A, B, C, D) 
matrix are related by 

4, +B 
q2 = Cql + D ’ 

(3.2-21) 
The ABCD Law 

Because the q parameter identifies the width W and curvature R of the Gaussian 
beam (see Exercise 3.1-3), this simple law, called the ABCD law, governs the effect of 
an arbitrary paraxial system on the Gaussian beam. The ABCD law will be proved by 
verification in special cases, and its generality will ultimately be established by induc- 
tion. 

Transmission Through Free Space 
When the optical system is a distance d of free space (or of any homogeneous 
medium), the elements of the ray-transfer matrix M are A = 1, B = d, C = 0, D = 1. 
Since q = t + jzO in free space, the q-parameter is modified by the optical system in 
accordance with q2 = qi + d = (1 . q1 + d)/(O * q1 + l), so that the ABCD law ap- 
plies. 

Transmission Through a Thin Optical Component 
An arbitrary thin optical component does not affect the ray position, so that 

Y, = Y,, (3.2-22) 

but does alter the angle in accordance with 

8, = Cyl + De,, (3.2-23) 

as illustrated in Fig. 3.2-10. Thus A = 1 and B = 0, but C and D are arbitrary. In all 
of the thin optical components described in Sec. 1.4B, however, D = nl/n2. Since the 

Optical 
component 

Figure 3.2-10 Modification of a Gaussian beam by a thin optical component. 
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optical component is thin, the beam width does not change, i.e., 

w2 = WI. (3.2-24) 

If the input and output beams are approximated by spherical waves of radii R, and R, 
at the input and output planes of the component, respectively, then in the paraxial 
approximation (small 8, and 0,), 8i = y,/R, and e2 = y,/R,. Substituting into (3.2-231, 
and using (3.2-221, we obtain 

1 
-=C+E. 
R2 1 

(3.2-25) 

Using (3.1-6), which is the expression for 4 as a function of R and W, and noting that 
D = n1/n2 = h,/A,, (3.2-24) and (3.2-25) can be combined into a single equation, 

1 
-c+D, 
92 41 

(3.2-26) 

from which q2 = (1 . qi + O)/(Cql + D), so that the ABCD law also applies. 

Invariance of the ABCD Law to Cascading 
If the ABCD law is applicable to each of two optical systems with matrices Mi = 
(Aj, Bj, Cj, Q), i = 1,2, it must also apply to a system comprising their cascade 
(a system with matrix M = M,M,). This may be shown by straightforward substitution. 

Generality of the ABCD Law 
Since the ABCD law applies to thin optical components and to propagation in a 
homogeneous medium, it also applies to any combination thereof. All of the par-axial 
optical systems of interest are combinations of propagation in homogeneous media and 
thin optical components such as thin lenses and mirrors. We therefore conclude that 
the ABCD law is applicable to all these systems. Since an inhomogeneous continuously 
varying medium may be regarded as a cascade of incremental thin elements followed 
by incremental distances, we conclude that the ABCD law applies to these systems as 
well, provided that all rays (wavefront normals) remain paraxial. 

EXERCISE 3.2-5 

Transmission of a Gaussian Beam Through a Transparent Plate. Use the ABCD 
law to examine the transmission of a Gaussian beam from air, through a transparent plate 
of refractive index n and thickness d, and again into air. Assume that the beam axis is 
normal to the plate. 

3.3 HERMITE - GAUSSIAN BEAMS 

The Gaussian beam is not the only beam-like solution of the paraxial Helmholtz 
equation (3.1-2). There are may other solutions including beams with non-Gaussian 
intensity distributions. Of particular interest are solutions that share the paraboloidal 
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wavefronts of the Gaussian beam, but exhibit different intensity distributions. Beams of 
paraboloidal wavefronts are of importance since they match the curvatures of spherical 
mirrors of large radius. They can therefore reflect between two spherical mirrors that 
form a resonator, without being altered. Such self-reproducing waves are called the 
modes of the resonator. The optics of resonators is discussed in Chap. 9. 

Consider a Gaussian beam of complex envelope 

A,(& Y, z) = --$exp[ -jkz], (3.3-1) 

where q(z) = z + jz,. The beam radius W(z) is given by (3.143) and the wavefront 
radius of curvature R(z) is given by (3.1-9). Consider a second wave whose complex 
envelope is a modulated version of the Gaussian beam, 

exp[ jpZ( z)]A,( x, y, z), (3.3-2) 

where Z(m), y(m), and Z( *) are real functions. This wave, if it exists, has the following 
two properties: 

n The phase is the same as that of the underlying Gaussian wave, except for an 
excess phase Z(z) that is independent of x and y. If Z(z) is a slowly varying 
function of z, the two waves have paraboloidal wavefronts with the same radius 
of curvature R(z). These two waves are therefore focused by thin lenses and 
mirrors in precisely the same manner. 

n The magnitude 

where A,, = A,/jz,, is a function of x/W(z) and y/W(z) whose widths in the x 
and y directions vary with z in accordance with the same scaling factor W(z). As 
z increases, the intensity distribution in the transverse plane remains fixed, except 
for a magnification factor W(z). This distribution is a Gaussian function modu- 
lated in the x and y directions by the functions F2( 9) and y2( *). 

The modulated wave therefore represents a beam of non-Gaussian intensity distribu- 
tion, but with the same wavefronts and angular divergence as the Gaussian beam. 

The existence of this wave is assured if three real functions LY( * ), y( * ), and Z(z) 
can be found such that (3.3-2) satisfies the paraxial Helmholtz equation (3.1-2). 
Substituting (3.3-2) into (3.1-2), using the fact that A, itself satisfies (3.1-2), and 
defining two new variables u = 6 x/W(z) and v = fi y/W(z), we obtain 

+kW2(z)g =o. (3.3-3) 

Since the left-hand side of this equation is the sum of three terms, each of which is a 
function of a single independent variable, u, u, or z, respectively, each of these terms 
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must be constant. Equating the first term to the constant -2~~ and the second to 
-2P2, the third must be equal to 2(,uu, + p2). This technique of “separation of 
variables” permits us to reduce the partial differential equation (3.3-3) into three 
ordinary differential equations for Z(U), y(u), and Z(z), respectively: 

1 d*Z dc?Y 

--- +Tl =A@++ 2 du* 
(3.3-4a) 

1 d*y dy 
--- +vx =/x*34 

2 dv* 
(3.3-4b) 

- = CL1 + P27 (3.3-4c) 

where we have used the expression for W(z) given in (3.1-8) and (3.1-11). 
Equation (3.3-4a) represents an eigenvalue problem whose eigenvalues are pl = I, 

where I = 0, 1,2, . . . and whose eigenfunctions are the Hermite polynomials Z(u) = 
H,(u), I = 0, 1,2, . . . . These polynomials are defined by the recurrence relation 

HI&) = 24(u) - 21H,-,(u) (3.3-5) 

and 

Thus 

H,(u) = 1, H,(u) = 2~. (3.3-6) 

H*(U) = 4u2 - 2, H3(u) = 8u3 - 12u, . . . . (3.3-7) 

Similarly, the solutions of (3.3-4b) are p2 = m and y(v) = H,(v), where m = 
0, 1,2, . . . . There is therefore a family of solutions labeled by the indices (I, m). 

Substituting p1 = 1 and p2 = m in (3.3-4c), and integrating, we obtain 

-e> = (1 -I- mM4, (3.3-8) 

where 4’(z) = tan-‘(z/zo). The excess phase X(z) varies slowly between 
-(I + m)r/2 and (I + m)r/2, as z varies between - 00 and 00 (see Fig. 3.1-5). 

We finally substitute into (3.3-2) to obtain an expression for the complex envelope of 
the beam labeled by the indices (I, m). Rearranging terms and multiplying by exp( -jkz) 
provides the complex amplitude 

x2 -I- y* 
X exp -.ikz - jk 2R(z) - + j(1 + m -I- l)j(z) , 

I 

(3.3-9) 

Hermite - 
Gaussian Beam 

Complex Amplitude 
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Figure 3.3-l Several low-order Hermite-Gaussian functions: (a) G,(u); (b) G,(u); (c) G,(u); 
Cd) G,(u). 

where 

G,(u) = H,(u) exp $ , 
i I 

1 = 0,1,2,. . . , (3.3-10) 

is known as the Hermite-Gaussian function of order 1, and A, m is a constant. 
Since H,(u) = 1, the Hermite-Gaussian function of order O’is simply the Gaussian 

function. G,(u) = 2u exp( -u*/2) is an odd function, G,(u) = (4u2 - 2) exp( -u*/2) is 
even, G,(u) = (8u3 - 12u)exp( -u*/2) is odd, and so on. These functions are shown 
in Fig. 3.3-l. 

An optical wave with complex amplitude given by (3.3-9) is known as the 
Hermite-Gaussian beam of order (I, m). The Hermite-Gaussian beam of order (0, 0) 
is the Gaussian beam. 

Intensity Distribution 
The optical intensity of the (I, m) Hermite-Gaussian beam is 

&J-G Y, 2) = IAJ*[ $$]*Gi[ &]G:[ $1. (3.34) 

Figure 3.3-2 illustrates the dependence of the intensity on the normalized transverse 
distances u = fix/W(z) and v = fi y/W(z) for several values of 1 and m. Beams of 
higher order have larger widths than those of lower order as is evident from Fig. 3.3-l. 

(O,W 1 (O,l) ) (L2) 1 (22) 

fb) fc) (d) te) ff) 

Figure 3.3-2 Intensity distributions of several low-order Hermite-Gaussian beams in the 
transverse plane. The order (1, m) is indicated in each case. 
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Regardless of the order, however, the width of the beam is proportional to W(z), so 
that as z increases the intensity pattern is magnified by the factor W(z)/W, but 
otherwise maintains its profile. Among the family of Hermite-Gaussian beams, the 
only circularly symmetric member is the Gaussian beam. 

EXERCISE 3.3- 1 

The Donut Beam. A wave is a superposition of two Hermite-Gaussian beams of orders 
(l,O> and (0,l) f o equal intensities. The two beams have independent and random phases 
so that their intensities add with no interference. Show that the total intensity is a 
donut-shaped circularly symmetric function. Assuming that W, = 1 mm, determine the 
radius of the circle of peak intensity and the radii of the two circles of l/e2 times the peak 
intensity at the beam waist. 

*3.4 IAGUERRE -GAUSSIAN AND BESSEL BEAMS 

Laguerre - Gaussian Beams 
The Hermite-Gaussian beams form a complete set of solutions to the paraxial 
Helmholtz equation. Any other solution can be written as a superposition of these 
beams. But this family is not the only one. Another complete set of solutions, known as 
Laguerre-Gaussian beams, may be obtained by writing the paraxial Helmholtz equa- 
tion in cylindrical coordinates (p, 4, z) and using separation of variables in p and 4, 
instead of x and y. The lowest-order Laguerre-Gaussian beam is the Gaussian beam. 

Bessel Beams 
In the search for beamlike waves, it is natural to examine the possibility of the 
existence of waves with planar wavefronts but with nonuniform intensity distributions 
in the transverse plane. Consider a wave with the complex amplitude 

U(r) = A( x, y)ePipz. (3.4-l) 

For this wave to satisfy the Helmholtz equation, V2U + k2U = 0, A(x, y) must satisfy 

V;A + k$A = 0, (3.4-2) 

where k$ + p2 = k 2 and VT2 = d2/ax2 + a2/dy2 is the transverse Laplacian operator. 
Equation (3.4-2), known as the two-dimensional Helmholtz equation, may be solved 
using the method of separation of variables. Using polar coordinates (x = p cos 4, 
y = p sin 41, the result is 

A(x, Y> = A,Jm(kTp)ejm4, m = 0, f 1, f 2,. . . ) (3.4-3) 

where J,(e) is the Bessel function of the first kind and mth order, and A, is a 
constant. Solutions of (3.4-3) that are singular at p = 0 are not included. 

For m = 0, the wave has a complex amplitude 

U(r) = A,J,( kTp)e-jp’ 
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Figure 3.4-l The intensity distribution of the Bessel beam in the transverse plane is indepen- 
dent of z; the beam does not diverge. 

and therefore has planar wavefronts. The wavefront normals (rays) are all parallel to 
the z axis. The intensity distribution I(p, 4, z) = (A,J2J,-@,p) is circularly symmetric, 
varies with p as illustrated in Fig. 3.4-1, and is independent of z, so that there is no 
spread of the optical power. This wave is called the Bessel beam. 

It is interesting to compare the Bessel beam to the Gaussian beam. Whereas the 
complex amplitude of the Bessel beam is an exact solution of the Helmholtz equation, 
the complex amplitude of the Gaussian beam is only an approximate solution (its 
complex envelope is an exact solution of the paraxial Helmholtz equation, however). 
The intensity distribution of these two beams are compared in Fig. 3.4-2. The 
asymptotic behavior of these distributions in the limit of large radial distances is 
significantly different. Whereas the intensity of the Gaussian beam decreases exponen- 
tially in proportionality to exp[ - 2p2/W2(z)], the intensity of the Bessel beam is 
proportional to .Ii(k,p) = (2/rrk,p) cos2(k,p - r/4), which is an oscillatory func- 
tion with slowly decaying magnitude. Whereas the rms width of the Gaussian 
beam, cr = iW(z), is finite, the rms width of the Bessel beam is infinite at all z (see 

Figure 3.4-2 Comparison of the radial intensity distributions of a Gaussian beam and a Bessel 
beam. Parameters are selected such that the peak intensities and l/e2 widths are identical in 
both cases. 
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Appendix A, Sec. A.2 for the definition of rms width). There is a tradeoff between the 
minimum beam size and the divergence. Thus although the divergence of the Bessel 
beam is zero, its rms width is infinite. The generation of Bessel beams requires special 
schemes.+ Since Gaussian beams are the modes of spherical resonators, they are 
created naturally by lasers. 

READING LIST 

Books with Chapters on Optical Beams 
A. Yariv, Quantum Electronics, Wiley, New York, 1967, 3rd ed. 1989. 
J. T. Verdeyen, Laser Electronics, Prentice-Hall, Englewood Cliffs, NJ, 1981, 2nd ed. 1989. 
P. W. Milonni and J. H. Eberly, Lasers, Wiley, New York, 1988. 
W. Witteman, The Laser, Springer-Verlag, New York, 1987. 
A. E. Siegman, Lasers, University Science Books, Mill Valley, CA, 1986. 
K. Shimoda, Introduction to Laser Physics, Springer-Verlag, New York, 2nd ed. 1986. 
S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction and Confinement of Optical 

Radiation, Academic Press, New York, 1986. 
A. Yariv, Optical Electronics, Holt, Rinehart and Winston, New York, 1971, 3rd ed. 1985. 
D. C. O’Shea, Elements of Modern Optical Design, Wiley, New York, 1985. 
D. Marcuse, Light Transmission Optics, Van Nostrand Reinhold, New York, 1972, 2nd ed. 1982. 
M. S. Sodha and A. K. Ghatak, Inhomogeneous Optical Waueguides, Plenum Press, New York, 

1977. 
J. A. Arnaud, Beam and Fiber Optics, Academic Press, New York, 1976. 
A. E. Siegman, An Introduction to Lasers and Masers, McGraw-Hill, New York, 1971. 

Special Journal Issue 
Special issue on propagation and scattering of beam fields, Journal of the Optical Society of 

America A, vol. 3, no. 4, 1986. 

Articles 
H. Kogelnik and T. Li, Laser Beams and Resonators, Proceedings of the IEEE, vol. 54, pp. 

1312-1329, 1966. 
A. G. Fox and T. Li, Resonant Modes in a Maser Interferometer, Bell System Technical Journal, 

vol. 40, pp. 453-488, 1961. 
G. D. Boyd and J. P. Gordon, Confocal Multimode Resonator for Millimeter Through Optical 

Wavelength Masers, Bell System Technical Journal, vol. 40, pp. 489-508, 1961. 

PROBLEMS 

3.1-1 Beam Parameters. The light from a Nd:YAG laser at wavelength 1.06 pm is a 
Gaussian beam of 1-W optical power and beam divergence 28, = 1 mrad. Deter- 
mine the beam waist radius, the depth of focus, the maximum intensity, and the 
intensity on the beam axis at a distance z = 100 cm from the beam waist. 

3.1-2 Beam Identification by Two Widths. A Gaussian beam of wavelength A, = 10.6 pm 
(emitted by a CO, laser) has widths W, = 1.699 mm and W, = 3.38 mm at two 
points separated by a distance d = 10 cm. Determine the location of the waist and 
the waist radius. 

‘See P. W. Milonni and J. H. Eberly, Lasers, Wiley, New York, 1988, Sec. 14.14. 
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3.1-3 The Elliptic Gaussian Beam. The paraxial Helmholtz equation admits a Gaussian 
beam with intensity 1(x, y, 0) = IA,l2 exp[ -2(x2/W& + y2/wo2,)] in the z = 0 
plane, with beam waist radii W,, and WoY in the x and y-directions respectively. 
The contours of constant intensity are therefore ellipses instead of circles. Write 
expressions for the beam depth of focus, angular divergence, and radii of curvature 
in the x and y directions, as functions of W,,, WoY, and the wavelength A. If 
W,, = 2W,,, sketch the shape of the beam spot in the z = 0 plane and in the far 
field (z much greater than the depths of focus in both transverse directions). 

3.2-l Beam Focusing. An argon-ion laser produces a Gaussian beam of wavelength 
h = 488 nm and waist radius I+‘, = 0.5 mm. Design a single-lens optical system for 
focusing the light to a spot of diameter 100 pm. What is the shortest focal-length 
lens that may be used? 

3.2-2 Spot Size. A Gaussian beam of Rayleigh range z0 = 50 cm and wavelength h = 488 
nm is converted into a Gaussian beam of waist radius Wd using a lens of focal length 
f = 5 cm at a distance z from its waist, as illustrated in Fig. 3.2-2. Write a computer 
program to plot Wd as a function of z. Verify that in the limit z - f z-+ z,,, (3.2-10) 
and (3.2-12) hold; and in the limit z < z0 (3.2-13) holds. 

3.2-3 Beam Refraction. A Gaussian beam is incident from air (n = 1) into a medium with 
a planar boundary and refractive index n = 1.5. The beam axis is normal to the 
boundary and the beam waist lies at the boundary. Sketch the transmitted beam. If 
the angular divergence of the beam in air is 1 mrad, what is the angular divergence 
in the medium? 

*3.2-4 Transmission of a Gaussian Beam Through a Graded-Index Slab. The ABCD 
matrix of a SELFOC graded-index slab with quadratic refractive index (see Sec. 
1.3B) n(y) = n,(l - ia2y2) and length d is: A = cos ad, B = (l/a)sin ad, C = 
--LY sin ad, D = cos ad for paraxial rays along the z direction. A Gaussian beam of 
wavelength h,, waist radius W, in free space, and axis in the z direction enters the 
slab at its waist. Use the ABCD law to determine an expression for the beam width 
in the y direction as a function of d. Sketch the shape of the beam as it travels 
through the medium. 

3.3-l Power Confinement in Hermite-Gaussian Beams. Determine the ratio of the power 
contained within a circle of radius W(z) in the transverse plane to the total power in 
the Hermite-Gaussian beams of orders (0, O), (1, 0), (0, l), and (1,l). What is the 
ratio of the power contained within a circle of radius W(z)/10 to the total power for 
the (0,O) and (1,l) Hermite-Gaussian beams? 

3.3-2 Superposition of Two Beams. Sketch the intensity of a superposition of the (1,O) and 
(1,O) Hermite-Gaussian beams assuming that the complex coefficients A,,, and 
A,, 1 in (3.3-9) are equal. 

3.3-3 Axial Phase. Consider the Hermite-Gaussian beams of all orders (I, m) and Rayleigh 
range z0 = 30 cm in a medium of refractive index n = 1. Determine the frequencies 
within the band v = 1014 + 2 x lo9 Hz for which the phase retardation between the 
planes z = -zO and z = z0 is an integer multiple of 7r on the beam axis. These 
frequencies are the modes of a resonator made of two spherical mirrors placed at the 
z = fz, planes, as described in Sec. 9.2D. 


