
1
st
 stage2016 Lect.5

College of Computer Technology

1

The Von Neumann Model.

 John von Neumann, along with others, proposed the concept of the stored

program that we use even today. The idea was to keep a program in the memory and

read the instructions from it. He also proposed an architecture that clearly identified

the components we have presented previously: ALU, control, input, output, and

memory as illustrated in Figure 1. This architecture is known as the von Neumann

architecture.

This architecture uses what is known as the stored program model. In the von

Neumann architecture, the stored program is the most important aspect of the von

Neumann model. The key features of this architecture are as follows:

• There is no distinction between instructions and data. This requirement has several

main implications:

1. Instructions are represented as numbers, just like the data themselves. This uniform

treatment of instructions and data simplifies the design of memory and software.

2. Instructions and data are not stored in separate memories; a single memory is used

for both. Thus, a single path from the memory can carry both data and instructions.

3. The memory is addressed by location, regardless of the type of data at that location.

Figure 1: The von Neumann model of a digital computer. Thick

arrows represent data paths. Thin arrows represent control paths.

1
st
 stage2016 Lect.5

College of Computer Technology

2

• By default, instructions are executed in the sequential manner in which they are

present in the stored program.

A program is stored in the computer’s memory along with the data to be

processed (A computer with a von Neumann architecture has a single memory space

that contains both the instructions and the data, see figure 2). This can lead to a

condition called the von Neumann bottleneck, it places a limitation on how fast the

processor can run. Instructions and data must share the same path to the CPU from

memory, so if the CPU is writing a data value out to memory, it cannot fetch the next

instruction to be executed. It must wait until the data has been written before

proceeding and vice versa.

In contrast to the single memory concept used in the von Neumann architecture,

the Harvard architecture uses separate memories for instructions and data. The term

now refers to machines that have a single main memory but use separate caches for

instructions and data.

Most processors now use two separate caches: one for instructions and the other

for data. This design uses separate buses for instructions and data. processors typically

use the Harvard architecture only at the CPU-cache interface.

Figure 2: Memory architecture for the von Neumann

1
st
 stage2016 Lect.5

College of Computer Technology

3

In order to avoid the von Neumann bottleneck :-

 multi-level caches used to reduce miss penalty (assuming that the L1 cache is

on-chip); and

 memory system are designed to support caches with burst mode accesses.

Programmed I/O (PIO).

I/O ports provide the basic access to I/O devices via the associated I/O controller.

We still will have to devise ways to transfer data between the system and I/O devices

using the I/O ports. A simple way of transferring data is to ask the processor to do the

transfer. In this scheme of things, the processor is responsible for transferring data

word by word. Typically, it executes a loop until the data transfer is complete. This

technique is called programmed I/O (PIO).

The CPU sends commands to the I/O device through an I/O address. Suppose

the CPU wants some data from a part of one of the disk drives. When a PC accesses

data from a disk, it can’t take it in 1 or 2 bytes, the smallest amount of data that the

CPU can ask for is a 512 byte sector.

The operations that take place for programmed I/O are shown in the flowchart

in Figure 3. The CPU first checks the status of the disk by reading a special register

that can be accessed in the memory space, or by issuing a special I/O instruction. If the

disk is not ready to be read or written, then the process loops back and checks the

status continuously until the disk is ready. This is referred to as a busy-wait. When the

disk is finally ready, then a transfer of data is made between the disk and the CPU.

After the transfer is completed, the CPU checks to see if there is another

communication request for the disk. If there is, then the process repeats, otherwise the

CPU continues with another task.

1
st
 stage2016 Lect.5

College of Computer Technology

4

One disadvantage of programmed I/O is that it wastes processor time. Another

problem is that high priority devices are not checked until the CPU is finished with its

current I/O task, which may have a low priority.

In addition to the Programmed I/O, two other mechanisms can be used to carry

out I/O operations. These are interrupt-driven I/O and direct memory access (DMA).

Figure 3 Programmed I/O flowchart for a disk transfer.

