Transportation problem : Methods for Initial Basic Feasible Solution (North - West corner rule and matrix minimum method)

Methods for Initial Basic Feasible Solution

Some simple methods to obtain the initial basic feasible solution are

- 1. North-West Corner Rule
- 2. Lowest Cost Entry Method (Matrix Minima Method)
- 3. Vogel's Approximation Method (Unit Cost Penalty Method)

1- North-West Corner Rule

Step 1

- The first assignment is made in the cell occupying the upper left-hand (north-west) corner of the table.
- The maximum possible amount is allocated here i.e. $x_{11} = \min(a_1, b_1)$. This value of x_{11} is then entered in the cell (1,1) of the transportation table.

Step 2

- i. If $b_1 > a_1$, move vertically downwards to the second row and make the second allocation of amount $x_{21} = \min(a_2, b_1 x_{11})$ in the cell (2, 1).
- ii. If $b_1 < a_1$, move horizontally right side to the second column and make the second allocation of amount $x_{12} = \min(a_1 x_{11}, b_2)$ in the cell (1, 2).
- iii. If $b_1 = a_1$, there is the for the second allocation. One can make a second allocation of magnitude $x_{12} = \min(a_1 a_1, b_2)$ in the cell (1, 2) or $x_{21} = \min(a_2, b_1 b_1)$ in the cell (2, 1)

Step 3

Start from the new north-west corner of the transportation table and repeat steps 1 and 2 until all the requirements are satisfied.

Find the initial basic feasible solution by using North-West Corner Rule

1	•		

$\begin{array}{c} W \rightarrow \\ F \\ \downarrow \end{array}$	\mathbf{W}_1	W_2	W ₃	\mathbf{W}_4	Factory Capacity
F ₁	19	30	50	10	7
F_2	70	30	40	60	9
F ₃	40	8	70	20	18
Warehouse Requirement	5	8	7	14	34

Solution

	\mathbf{W}_1	W_2	W_3	W_5	Availability
F_1	5 (19)	2 (30)			7 2 0
F_2		6 (30)	3 (40)		9 3 0
F ₃			4 (70)	14 (20)	18 14 0
	5	8	7	14	
Requirement	0	6	4	0	
		0	0		

Initial Basic Feasible Solution

 $x_{11} = 5$, $x_{12} = 2$, $x_{22} = 6$, $x_{23} = 3$, $x_{33} = 4$, $x_{34} = 14$ The transportation cost is 5 (19) + 2 (30) + 6 (30) + 3 (40) + 4 (70) + 14 (20) = Rs. 1015

2.

	D_1	D_2	D_3	D_4	Supply
O_1	1	5	3	3	34
O_1 O_2 O_3	3	3	1	2	15
O ₃	0	2	2	3	12
O ₄ Demand	2	7	2	4	19
Demand	21	25	17	17	80

Solution

Initial Basic Feasible Solution $x_{11} = 21, x_{12} = 13, x_{22} = 12, x_{23} = 3, x_{33} = 12, x_{43} = 2, x_{44} = 17$ The transportation cost is 21 (1) + 13 (5) + 12 (3) + 3 (1) + 12 (2) + 2 (2) + 17 (4) = Rs. 221

3.

From	То					Supply
	2	11	10	3	7	4
	1	4	7	2	1	8
	3	1	4	8	12	9
Demand	3	3	4	5	6	
Solution						
From	То					Supply
	3	1				
	(2)	(11)				4 1 0
		2	4	2		
		(4)	(7)	(2)		8 6 2 0
				3	6	
				(8)	(12)	960
	11111111					
•	3	3	4	5	6	
Demand	3 0	3 2	4 0	5 3	6 0	

Initial Basic Feasible Solution $x_{11} = 3, x_{12} = 1, x_{22} = 2, x_{23} = 4, x_{24} = 2, x_{34} = 3, x_{35} = 6$ The transportation cost is 3 (2) + 1 (11) + 2 (4) + 4 (7) + 2 (2) + 3 (8) + 6 (12) = Rs. 153

2 - Lowest Cost Entry Method (Matrix Minima Method)

Step 1

Determine the smallest cost in the cost matrix of the transportation table. Allocate $x_{ij} = min (a_i, a_j)$ b_i) in the cell (i, j)

Step 2

- If x_{ij} = a_i, cross out the ith row of the table and decrease b_j by a_i. Go to step 3.
 If x_{ij} = b_j, cross out the jth column of the table and decrease a_i by b_j. Go to step 3.
 If x_{ij} = a_i = b_j, cross out the ith row or jth column but not both.

Step 3

Repeat steps 1 and 2 for the resulting reduced transportation table until all the requirements are satisfied. Whenever the minimum cost is not unique, make an arbitrary choice among the minima.

Find the initial basic feasible solution using Matrix Minima method

1.

	W_1	W ₂	W ₃	W_4	Availability
F_1	19	30	50	10	7
F_2	70	30	40	60	9
F_3	40	8	70	20	18
Requirement	5	8	7	14	

Solution

	\mathbf{W}_1	W_2	W ₃	W_4	1
F_1	(19)	(30)	(50)	(10)	7
F_2	(70)	(30)	(40)	(60)	9
F ₂ F ₃		8			10
	(40) 5	(8) X	(70) 7	(20) 14	
	W_1	W_2	W/-	W.	
F_1			W ₃	W ₄ 7	x
	(19)	(30)	(50)	(10)	
F ₂	(70)	(30)	(40)	(60)	9
F ₃	(40) 5	8 (8) X	(70) 7	(20)	10
	5	Х	7	7	•
	X 7	N 7	W 7	N 7	
Б	\mathbf{W}_1	W ₂	W ₃	$\frac{W_4}{7}$	
F ₁	(19)	(30)	(50)	(10)	X
F_2	(70)	(30)	(40)	(60) 7	9
F ₃	(40)	8 (8) X		$\begin{bmatrix} 7\\(20) \end{bmatrix}$	3
	5	X	(70) 7	(20) X	
	W ₁	W ₂	W ₃	W ₄	
F_1	W ₁ (19)	W ₂ (30)	W ₃ (50)	W ₄ 7 (10)	Х
F_1 F_2	(19)	(30)	(50)	7 (10)	X 9
F ₂	(19)	(30)	(50) (40)	7 (10)	
			(50)	7	9

	\mathbf{W}_1	W_2	W_3	\mathbf{W}_4	
F_1	(19)	(30)	(50)	7 (10)	Х
F_2	2 (70)	(30)	7 (40)	(60)	Х
F ₃	3 (40)	8 (8)	(70)	7 (20)	Х
	X	X	X	Χ	I

Initial Basic Feasible Solution

 $x_{14} = 7$, $x_{21} = 2$, $x_{23} = 7$, $x_{31} = 3$, $x_{32} = 8$, $x_{34} = 7$ The transportation cost is 7 (10) + 2 (70) + 7 (40) + 3 (40) + 8 (8) + 7 (20) = Rs. 814

2.

		То				Availability
	2	11	10	3	7	4
From	1	4	7	2	1	8
	3	9	4	8	12	9
Requirement	3	3	4	5	6	-

Solution

То

				4 (3)		4 0
From	3 (1)				5 (1)	850
		3 (9)	4 (4)	1 (8)	1 (12)	95410
	3	3	4	5	6	-
	0	0	0	1	1	
				0	0	

Initial Basic Feasible Solution

 $x_{14} = 4$, $x_{21} = 3$, $x_{25} = 5$, $x_{32} = 3$, $x_{33} = 4$, $x_{34} = 1$, $x_{35} = 1$ The transportation cost is 4 (3) + 3 (1) + 5(1) + 3 (9) + 4 (4) + 1 (8) + 1 (12) = Rs. 78