Transportatıon problem :
 Methods for Initial Basic Feasible Solution (North - West corner rule and matrix minimum method)

Methods for Initial Basic Feasible Solution

Some simple methods to obtain the initial basic feasible solution are

1. North-West Corner Rule
2. Lowest Cost Entry Method (Matrix Minima Method)
3. Vogel's Approximation Method (Unit Cost Penalty Method)

1- North-West Corner Rule

Step 1

- The first assignment is made in the cell occupying the upper left-hand (north-west) corner of the table.
- The maximum possible amount is allocated here i.e. $x_{11}=\min \left(a_{1}, b_{1}\right)$. This value of x_{11} is then entered in the cell $(1,1)$ of the transportation table.

Step 2

i. If $b_{1}>a_{1}$, move vertically downwards to the second row and make the second allocation of amount $\mathrm{x}_{21}=\min \left(\mathrm{a}_{2}, \mathrm{~b}_{1}-\mathrm{x}_{11}\right)$ in the cell $(2,1)$.
ii. If $b_{1}<a_{1}$, move horizontally right side to the second column and make the second allocation of amount $x_{12}=\min \left(a_{1}-x_{11}, b_{2}\right)$ in the cell $(1,2)$.
iii. If $b_{1}=a_{1}$, there is tie for the second allocation. One can make a second allocation of magnitude $\mathrm{x}_{12}=\min \left(\mathrm{a}_{1}-\mathrm{a}_{1}, \mathrm{~b}_{2}\right)$ in the cell $(1,2)$ or $\mathrm{x}_{21}=\min \left(\mathrm{a}_{2}, \mathrm{~b}_{1}-\mathrm{b}_{1}\right)$ in the cell $(2,1)$

Step 3

Start from the new north-west corner of the transportation table and repeat steps 1 and 2 until all the requirements are satisfied.

Find the initial basic feasible solution by using North-West Corner Rule

1.

$\mathrm{W} \rightarrow$					
F					
\downarrow	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	Factory Capacity
F_{1}	19	30	50	10	7
$\mathrm{~F}_{2}$	70	30	40	60	9
$\mathrm{~F}_{3}$	40	8	70	20	18
Warehouse Requirement	5	8	7	14	34

Solution

	5	8	7	14
Requirement	0	6	4	0
		0	0	

Initial Basic Feasible Solution
$x_{11}=5, x_{12}=2, x_{22}=6, x_{23}=3, x_{33}=4, x_{34}=14$
The transportation cost is $5(19)+2(30)+6(30)+3(40)+4(70)+14(20)=$ Rs. 1015
2.

	D_{1}		D_{2}	D_{3}	D_{4}
Supply					
O_{1}	1	5	3	3	34
O_{2}	3	3	1	2	15
O_{3}	0	2	2	3	12
O_{4}	2	7	2	4	19
	Demand	21	25	17	17

Solution

O_{1}	D_{1}	D_{2}	D_{3}	D_{4}	Supply	
	21 (1)	$\begin{equation*} 13 \tag{5} \end{equation*}$			34	
O_{2}		12 (3)	${ }^{3}$ (1)			
O_{3}			12 (2)		12	0
O_{4}			$\underbrace{2}$		19	17
Demand	21	25	17	17		
	0	12	14	0		
		0	2			
			0			

Initial Basic Feasible Solution
$\mathrm{x}_{11}=21, \mathrm{x}_{12}=13, \mathrm{x}_{22}=12, \mathrm{x}_{23}=3, \mathrm{x}_{33}=12, \mathrm{x}_{43}=2, \mathrm{x}_{44}=17$
The transportation cost is $21(1)+13(5)+12(3)+3(1)+12(2)+2(2)+17(4)=$ Rs. 221
3.

From				
To				
Supply 2 11 10 3 7 4 1 4 7 2 1 8 3 1 4 8 12 9				

Demand | | 3 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Solution

From	To					Supply 410
	$\begin{array}{\|l\|} \hline 3 \\ \hline \end{array}$	1 (11)				
		2 (4)	4 (7)	2 (2)		8620
				$\begin{array}{ll} \hline 3 \\ \\ \hline \end{array}$	$\begin{array}{r} \\ \hline \end{array}$	960
	3	3	4	5	6	
Demand	0	2	0	3	0	
		0		0		

Initial Basic Feasible Solution
$\mathrm{x}_{11}=3, \mathrm{x}_{12}=1, \mathrm{x}_{22}=2, \mathrm{x}_{23}=4, \mathrm{x}_{24}=2, \mathrm{x}_{34}=3, \mathrm{x}_{35}=6$
The transportation cost is $3(2)+1(11)+2(4)+4(7)+2(2)+3(8)+6(12)=$ Rs. 153

2 - Lowest Cost Entry Method (Matrix Minima Method)

Step 1

Determine the smallest cost in the cost matrix of the transportation table. Allocate $x_{i j}=\min \left(a_{i j}\right.$, b_{j}) in the cell (i, j)

Step 2

- If $x_{i j}=a_{i}$, cross out the $i^{\text {th }}$ row of the table and decrease b_{j} by a_{i}. Go to step 3 .
- If $x_{i j}=b_{j}$, cross out the $j^{\text {th }}$ column of the table and decrease a_{i} by b_{j}. Go to step 3 .
- If $x_{i j}=a_{i}=b_{j}$, cross out the $i^{\text {th }}$ row or $j^{\text {th }}$ column but not both.

Step 3

Repeat steps 1 and 2 for the resulting reduced transportation table until all the requirements are satisfied. Whenever the minimum cost is not unique, make an arbitrary choice among the minima.

Find the initial basic feasible solution using Matrix Minima method

1.

F_{1}
F_{2}
F_{3}
Requirement

W_{1}	W_{2}	W_{3}	W_{4}	Availability
19	30	50	10	7
70	30	40	60	9
40	8	70	20	18
5	8	7	14	

Solution

F_{1}	W_{1}	W_{2}	W_{3}	W_{4}	
	(19)	(30)	(50)	$\begin{aligned} & 7 \\ & (10) \\ & \hline \end{aligned}$	X
F_{2}	$\begin{aligned} & 2 \\ & (70) \end{aligned}$	(30)	$\begin{aligned} & 7 \\ & (40) \end{aligned}$	(60)	X
F_{3}	$\begin{aligned} & 3 \\ & (40) \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & (8) \\ & \hline \end{aligned}$	(70)	$\begin{aligned} & 7 \\ & (20) \\ & \hline \end{aligned}$	X
	X	X	X	X	

Initial Basic Feasible Solution
$\mathrm{x}_{14}=7, \mathrm{x}_{21}=2, \mathrm{x}_{23}=7, \mathrm{x}_{31}=3, \mathrm{x}_{32}=8, \mathrm{x}_{34}=7$
The transportation cost is $7(10)+2(70)+7(40)+3(40)+8(8)+7(20)=$ Rs. 814
2.

To
Availability
From

2	11	10	3	7
1	4	7	2	1
3	9	4	8	12
3	9			
3	3	4	5	6

Solution

To

From

Initial Basic Feasible Solution
$\mathrm{x}_{14}=4, \mathrm{x}_{21}=3, \mathrm{x}_{25}=5, \mathrm{x}_{32}=3, \mathrm{x}_{33}=4, \mathrm{x}_{34}=1, \mathrm{x}_{35}=1$
The transportation cost is $4(3)+3(1)+5(1)+3(9)+4(4)+1(8)+1(12)=$ Rs. 78

