
User Datagram Program (UDP)

Position of UDP in the TCP/IP protocol suite

USER DATAGRAM

UDP packets, called user datagrams, have a fixed-size header of 8 bytes.

a. UDP user datagram

0	16 31
Source port number	Destination port number
Total length	Checksum

b. Header format

Example

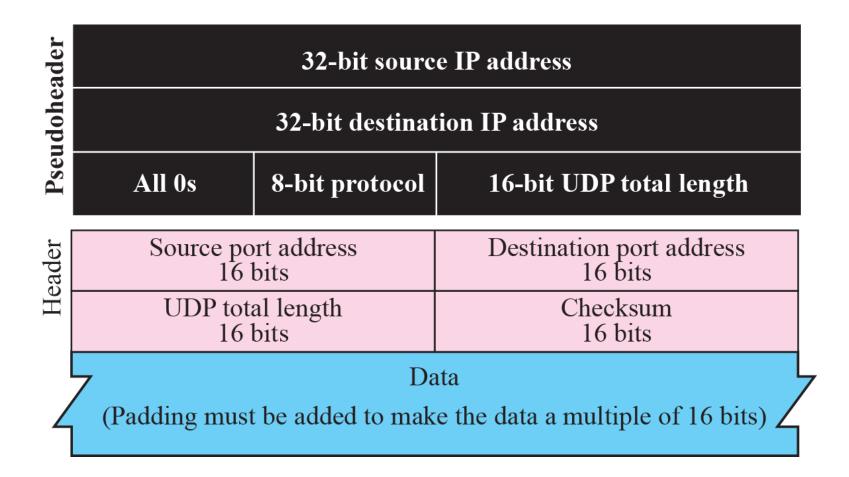
The following is a dump of a UDP header in hexadecimal format.

CB84000D001C001C

- a. What is the source port number?
- b. What is the destination port number?
- c. What is the total length of the user datagram?
- d. What is the length of the data?
- e. Is the packet directed from a client to a server or vice versa?
- f. What is the client process?

Example - Continued

Solution

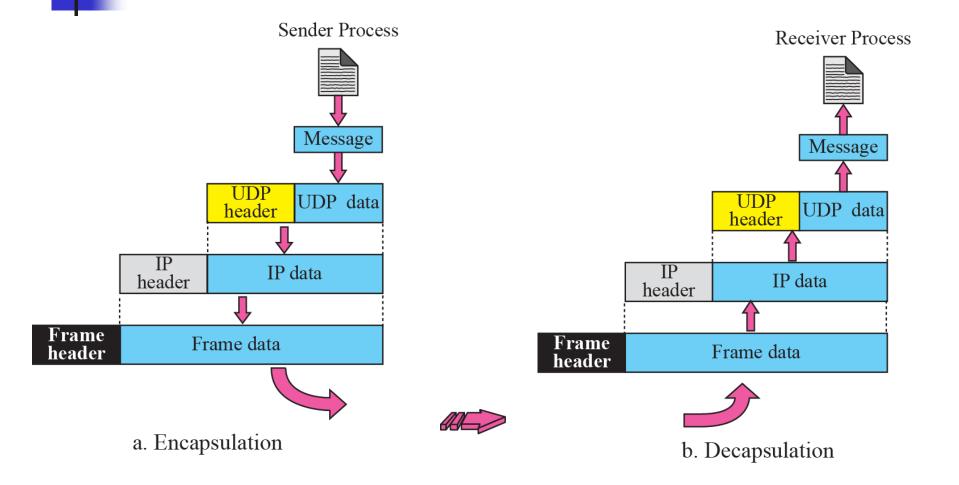

- a. The source port number is the first four hexadecimal digits (CB84)₁₆ or 52100.
- b. The destination port number is the second four hexadecimal digits (000D)₁₆ or 13.
- c. The third four hexadecimal digits (001C)₁₆ define the length of the whole UDP packet as 28 bytes.
- d. The length of the data is the length of the whole packet minus the length of the header, or 28 8 = 20 bytes.
- e. Since the destination port number is 13 (well-known port), the packet is from the client to the server.
- f. The client process is the Daytime.

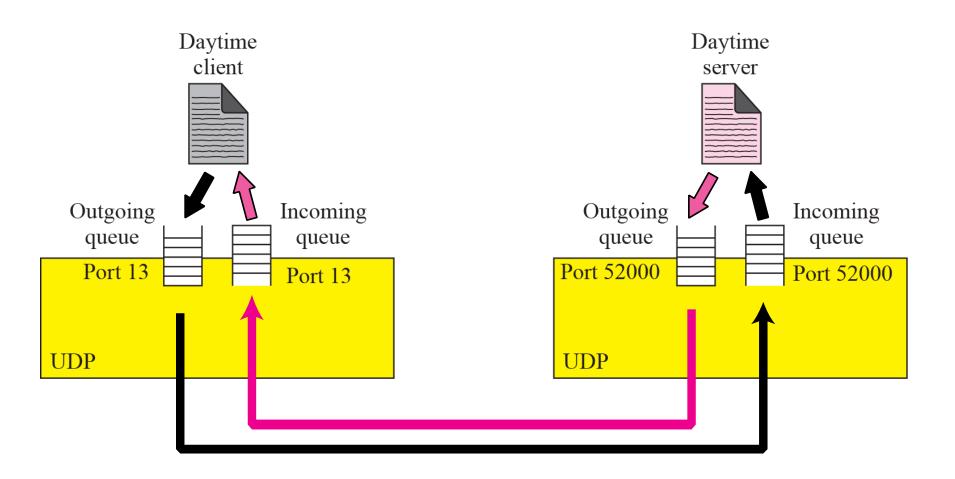
Topics Discussed in the Section (UDP Services)

- **✓** Process-to-Process Communication
- **✓** Connectionless Service
- **✓ Flow Control**
- **✓ Error Control**
- **✓** Congestion Control
- **✓** Encapsulation and Decapsulation
- **✓** Queuing
- **✓** Multiplexing and Demultiplexing
- ✓ Comparison between UDP and Generic Simple Protocol

Well-Known Port used with UDP

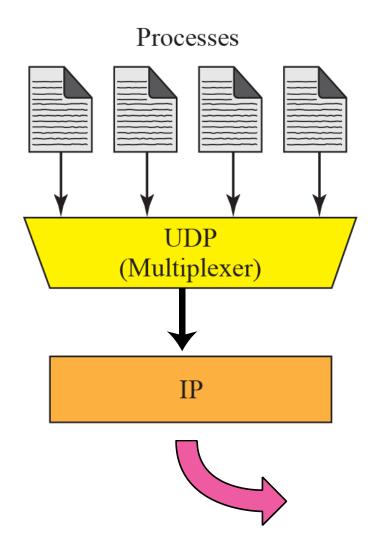
Port	Protocol	Description	
7	Echo	Echoes a received datagram back to the sender	
9	Discard	Discards any datagram that is received	
11	Users	Active users	
13	Daytime	Returns the date and the time	
17	Quote	Returns a quote of the day	
19	Chargen	Returns a string of characters	
53	Domain	Domain Name Service (DNS)	
67	Bootps	Server port to download bootstrap information	
68	Bootpc	Client port to download bootstrap information	
69	TFTP	Trivial File Transfer Protocol	
111	RPC	Remote Procedure Call	
123	NTP	Network Time Protocol	
161	SNMP	Simple Network Management Protocol	
162	SNMP	Simple Network Management Protocol (trap)	

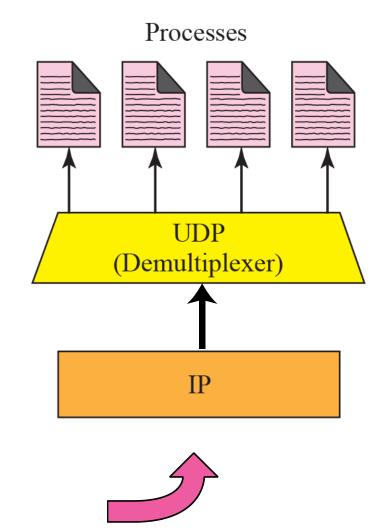



Figure 14.4 Checksum calculation for a simple UDP user datagram

153.18.8.105						
171.2.14.10						
All 0s	17	1	5			
1087		13				
15		All 0s				
T	Е	S	T			
I	N	G	Pad			

10011001	00010010		153.18
00001000	01101001	\longrightarrow	8.105
10101011	00000010	\longrightarrow	171.2
00001110	00001010	\longrightarrow	14.10
00000000	00010001		0 and 17
00000000	00001111		15
00000100	00111111		1087
00000000	00001101	\longrightarrow	13
00000000	00001111	\longrightarrow	15
00000000	00000000		0 (checksum)
01010100	01000101		T and E
01010011	01010100		S and T
01001001	01001110	\longrightarrow	I and N
01000111	00000000	\longrightarrow	G and 0 (padding)
		_	
10010110	11101011		Sum
01101001	00010100		Checksum


Encapsulation and decapsulation



Multiplexing and demultiplexing

UDP is an example of the connectionless simple protocol with the exception of an optional checksum added to packets for error detection.